-
Câu hỏi:
Cho hai vectơ \(\vec{a} \text { và } \vec{b}\) thỏa mãn \(|\vec{a}|=|\vec{b}|=1\) và hai vectơ \(\vec{u}=\frac{2}{5} \vec{a}-3 \vec{b}\) và \(\vec{v}=\vec{a}+\vec{b}\) vuông góc với nhau. Xác định góc α giữa hai vectơ \(\vec{a} \text { và } \vec{b}\)
-
A.
\(\alpha=90^{\circ}\)
-
B.
\(\alpha=180^{\circ}\)
-
C.
\(\alpha=60^{\circ}\)
-
D.
\(\alpha=45^{\circ}\)
Lời giải tham khảo:
Đáp án đúng: B
Ta có: \(\vec{u} \perp \vec{v} \Rightarrow \vec{u} \cdot \vec{v}=0 \Leftrightarrow\left(\frac{2}{5} \vec{a}-3 \vec{b}\right)(\vec{a}+\vec{b})=0 \Leftrightarrow \frac{2}{5} \vec{a}^{2}-\frac{13}{5} \vec{a} \vec{b}-3 \vec{b}^{2}=0\)
mà \(|\vec{a}|=|\vec{b}|=1\Rightarrow \overrightarrow{a b}=-1\)
Khi đó \(\cos (\vec{a}, \vec{b})=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot|\vec{b}|}=-1 \Rightarrow(\vec{a}, \vec{b})=180^{\circ}\)
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Cho tam giác đều ABC có cạnh bằng a và chiều cao AH. Mệnh đề nào sau đây là sai?
- Gọi G là trọng tâm tam giác đều ABC có cạnh bằng a. Mệnh đề nào sau đây là sai?
- Cho tam giác đều ABC có cạnh bằng a. Tính tích vô hướng \(\overrightarrow{A B} \cdot \overrightarrow{B C}\).
- Cho hai vectơ \(\vec{a} \text { và } \vec{b}\) thỏa mãn \(|\vec{a}|=|\vec{b}|=1\) và hai vectơ \(\vec{u}=\frac{2}{5} \vec{a}-3 \vec{b}\) và \(\vec{v}=\vec{a}+\vec{b}\) vuông góc với nhau. Xác định góc α giữa hai vectơ \(\vec{a} \text { và } \vec{b}\)
- Cho \(\vec{a} \text { và } \vec{b}\) là hai vectơ cùng hướng và đều khác vectơ \(\vec 0\). Mệnh đề nào sau đây đúng?
- Cho hai vectơ \(\vec{a} \text { và } \vec{b}\) thỏa mãn \(|\vec{a}|=3, \quad|\vec{b}|=2 \text { và } \vec{a} \cdot \vec{b}=-3\) Xác định góc \(\alpha\) giữa hai vectơ \(\vec{a} \text { và } \vec{b}\).
- Cho tam giác đều ABC có cạnh bằng a. Tính tích vô hướng \(\overrightarrow{A B} \cdot \overrightarrow{A C}\)
- Cho ba điểm A, B, C thỏa \(A B=2 \mathrm{cm}, B C=3 \mathrm{cm}, C A=5 \mathrm{cm} . \text { Tính } \overrightarrow{C A} \cdot \overrightarrow{C B}\)
- Cho tam giác ABC vuông tại A và có \(A B=c, A C=b\). Tính \(\overrightarrow{B A} \cdot \overrightarrow{B C}\).
- Cho tam giác ABC vuông cân tại A và có \(A B=A C=a\) . Tính \(\overrightarrow{A B} \cdot \overrightarrow{B C}\).