-
Câu hỏi:
Cho hai tam giác ABC và DEF có AB = EF, BC = FD, AC = ED, \(\widehat A = \widehat E;\widehat B = \widehat F;\widehat D = \widehat C\) . Khi đó
-
A.
\(\Delta ABC = \Delta D{\rm{EF}}\)
-
B.
\(\Delta ABC = \Delta {\rm{EFD}}\)
-
C.
\(\Delta ABC = \Delta {\rm{EDF}}\)
-
D.
\(\Delta ACB = \Delta {\rm{EFD}}\)
Lời giải tham khảo:
Đáp án đúng: B
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Cho \(\Delta ABC = \Delta MNP\). Chọn câu sai.
- Cho \(\Delta ABC = \Delta D{\rm{EF}}\). Biết \(\widehat A = {33^0}\). Khi đó
- Cho hai tam giác ABC và DEF có AB = EF, BC = FD, AC = ED, \(\widehat A = \widehat E;\widehat B = \widehat F;\widehat D = \widehat C\) .
- Cho \(\Delta ABC = \Delta D{\rm{EF}}\). Biết \(\widehat A = {32^0};\widehat F = {78^0}\). Tính \(\widehat B;\widehat E\)
- Cho \(\Delta ABC = \Delta MNP\). Biết AB = 5cm, MP = 7cm và chu vi của tam giác ABC bằng 22cm.
- Cho \(\Delta ABC = \Delta D{\rm{EF}}\). Biết rằng AB = 6cm, AC = 8cm và EF = 10cm. Chu vi tam giác DEF là
- Cho \(\Delta ABC = \Delta D{\rm{EF}}\). Biết \(\widehat A + \widehat B = {130^0};\widehat E = {55^0}\).
- Cho \(\Delta D{\rm{EF = }}\Delta MNP\). Biết EF + FD = 10cm, NP - MP = 2cm, DE = 3cm. Tính độ dài cạnh FD
- Cho tam giác ABC (không có hai góc nào bằng nhau, không có hai cạnh nào bằng nhau) bằng 1 tam giác có ba đỉnh O, H, K.
- Cho \(\Delta ABC{\rm{ = }}\Delta MNP\) trong đó \(\widehat A = {30^0};\widehat P = {60^0}\). So sánh các góc N; M; P