-
Câu hỏi:
Cho đoạn thẳng AB, O là trung điểm của AB. Trên cùng một nửa mặt phẳng bờ AB vẽ các tia Ax, By vuông góc với AB. Gọi C là điểm thuộc tia Ax. Đường vuông góc với OC tại O cắt tia By ở D. Khi đó
-
A.
AC = CD - BD
-
B.
AC = DC + BD
-
C.
CD = AC - BD
-
D.
CD = AC + BD
Lời giải tham khảo:
Đáp án đúng: D
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Cho tam giác ABC và tam giác NPM có BC = PM, \(\widehat B = \widehat P\).
- Cho tam giác ABC và tam giác MNP có \(\widehat A = \widehat M,\widehat B = \widehat N\).
- Cho tam giác ABC và tam giác MNP có \(\widehat B = \widehat N = {90^0}\), AC = MP, \(\widehat C = \widehat M\).
- Cho góc nhọn xOy, Oz là tia phân giác của góc đó. Qua điểm A thuộc tia Ox kẻ đường thẳng song song với Oy cắt Oz ở M.
- Cho đoạn thẳng AB, O là trung điểm của AB. Trên cùng một nửa mặt phẳng bờ AB vẽ các tia Ax, By vuông góc với AB.
- Cho tam giác ABC có AB = AC. Trên cạnh AB và AC lấy các điểm D, E sao cho AD = AE. Gọi K là giao điểm của BE và CD.
- Cho tam giác ABC có AB = AC. Trên cạnh AB và AC lấy các điểm D, E sao cho AD = AE chọn câu sai
- Cho tam giác DEF và tam giác HKG có \(\widehat D = \widehat H;\widehat E = \widehat K\), DE = HK. Biết \(\widehat F = {80^0}\).
- Cho tam giác ABC và tam giác DEF có AB = DE, \(\widehat B = \widehat E\), \(\widehat A = \widehat D\). Biết AC = 6cm.
- Cho tam giác ABC vuông tại A có AB = AC. Qua A kè đường thẳng xy sao cho B, C nằm cùng phía với xy.