-
Câu hỏi:
Cho hình lăng trụ ABC.A’B’C’ với G là trọng tâm của tam giác A’B’C’. Đặt \(\overrightarrow {AA'} = \overrightarrow a ,\overrightarrow {AB} = \overrightarrow b ,\overrightarrow {AC} = \overrightarrow c \). Vecto \(\overrightarrow {B'C} \) bằng:
-
A.
\(\overrightarrow a - \overrightarrow b - \overrightarrow c \)
-
B.
\(\overrightarrow c - \overrightarrow a - \overrightarrow b \)
-
C.
\(\overrightarrow b - \overrightarrow a - \overrightarrow c \)
-
D.
\(\overrightarrow a + \overrightarrow b + \overrightarrow c \)
Lời giải tham khảo:
Đáp án đúng: B
\(\overrightarrow {B'C} = \overrightarrow {AC'} - \overrightarrow {AB'} = \overrightarrow {AC} - \left( {\overrightarrow {AA'} + \overrightarrow {AB} } \right) = \overrightarrow c - \overrightarrow a - \overrightarrow b \)
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Trong không gian cho điểm O và bốn điểm A, B, C, D không thẳng hàng.
- Cho hình chóp S.ABCD có đáy ABCD là hình bình hành.
- Cho tứ diện ABCD.
- Cho tứ diện ABCD. Các điểm M và N lần lượt là trung điểm của AB và CD.
- Cho hình lăng trụ ABC.A’B’C’ với G là trọng tâm của tam giác A’B’C’.
- Cho tứ diện ABCD. Gọi M, N, P, và Q lần lượt là trung điểm của AB, BC, CD, và DA.
- Ba vecto \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) không đồng phẳng nếu?
- Cho tứ diện ABCD với G là trọng tâm và các điểm M, N, P, Q, I, J lần lượt là trung điểm của các cạnh AB, BC, CD, AD, AC,
- Cho hình chóp tứ giác đều S. ABCD có tất cả các cạnh bằng a.
- Cho tứ diện ABCD, E và F lần lượt là trung điểm của AB và CD, AB = 2a, CD = 2b và EF = 2c. M là một điểm bất kì.