Giải bài 1.3 tr 157 sách BT Toán lớp 8 Tập 1
Cho hình vuông ABCD có AB = 3cm
Trên tia đối của tia BA lấy điểm K ao cho BK = 1cm
Trên tia đối của tia CB lấy điểm L ao cho CL = 1cm
Trên tia đối của tia DC lấy điểm M ao cho MD = 1cm
Trên tia đối của tia AD lấy điểm N ao cho NA = 1cm
Chứng minh KLMN là hình vuông
Hướng dẫn giải chi tiết
Hướng dẫn giải
Chứng minh bốn tam giác vuông \(MCL, LKB, KAN, NDM\) bằng nhau.
Khi đó suy ra: \(ML = LK = KN = NM\) và \( LK\) vuông góc với \(KN\)
Từ đó ta có \(KLMN\) là hình vuông.
Lời giải chi tiết
Xét ∆ ANK và ∆ BKL
AN = BK (gt)
\(\widehat A = \widehat B = 90^\circ \)
AK = BL (vì AB = BC, BK = CL)
Do đó ∆ ANK = ∆ BKL (c.g.c)
⇒ NK = KL (1)
Xét ∆ BKL và ∆ CLM:
BK = CL (gt)
\(\widehat B = \widehat C = 90^\circ \)
BL = CM (vì BC = CD, CL = DM)
Do đó: ∆ BKL = ∆ CLM (c.g.c)
⇒ KL = LM (2)
Xét ∆ CLM và ∆ DMN :
CL = DM (gt)
\(\widehat C = \widehat D = 90^\circ \)
CM = DN (vì CD = DA, DM = AN)
Do đó: ∆ CLM = ∆ DMN (c.g.c)
⇒ LM = MN (3)
Từ (1), (2) và (3) ⇒ NK = KL = LM = MN
Tứ giác MNKL là hình thoi
∆ ANK = ∆ BKL \( \Rightarrow \widehat {ANK} = \widehat {BKL}\)
Trong tam giác ANK có \(\widehat A = 1v \Rightarrow \widehat {ANK} + \widehat {AKN} = 90^\circ \)
\( \Rightarrow \widehat {BKL} + \widehat {AKN} = 90^\circ \)hay \(\widehat {NKL} = 90^\circ \)
Vậy tứ giác MNKL là hình vuông.
-- Mod Toán 8 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.