OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Bài 4 trang 65 SGK Toán 8 Tập 2 Cánh diều - CD

Bài 4 trang 65 SGK Toán 8 Tập 2 Cánh diều

Cho tam giác ABC nhọn có H là trực tâm. Gọi M, N, P, Q lần lượt là trung điểm của các đoạn thẳng AB, BH, HC, CA. Chứng minh tứ giác MNPQ là hình chữ nhật?

ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài 4

Vì M, N lần lượt là trung điểm của các đoạn thẳng AB, BH nên ta có:

MN là đường trung bình tam giác ABH \( \Rightarrow MN//AH\) mà \(AH \bot BC\) nên \(MN \bot BC\) (1)

Vì P, Q lần lượt là trung điểm của các đoạn thẳng CH, AC nên ta có:

PQ là đường trung bình tam giác AHC \( \Rightarrow PQ//AH\) mà \(AH \bot BC\) nên \(QP \bot BC\) (2)

Vì P, N lần lượt là trung điểm của các đoạn thẳng CH, BH nên ta có:

PN là đường trung bình tam giác BHC \( \Rightarrow PN//BC\) mà \(AH \bot BC\) nên \(PN \bot AH\)(3)

Vì M, Q lần lượt là trung điểm của các đoạn thẳng AB, AC nên ta có:

MQ là đường trung bình tam giác ABC \( \Rightarrow MQ//BC\) mà \(AH \bot BC\) nên \(MQ \bot AH\)(4)

Từ (1), (2), (3), (4) ta có \(\widehat {MNP} = \widehat {NPQ} = \widehat {PQM} = \widehat {QMN} = 90^\circ \)

Vậy tứ giác MNPQ là hình chữ nhật (dhnb).

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài 4 trang 65 SGK Toán 8 Tập 2 Cánh diều - CD HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF