OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Giải bài 5 trang 63 SBT Toán 7 Chân trời sáng tạo tập 1 - CTST

Giải bài 5 trang 63 SBT Toán 7 Chân trời sáng tạo tập 1

Tính thể tích của một hình lăng trụ đứng đáy là một tứ giác như Hình 10, có độ dài AC = 5 m, BM = DN = 3 m, chiều cao của lăng trụ 7 m.

ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết Bài 5

Phương pháp giải

Ta chia tứ giác thành 2 tam giác rồi tính lần lượt diện tích từng tam giác, cộng hai diện tích tam giác đó ta được diện tích đáy rồi suy ra thể tích hình lăng trụ qua công thức V = Sđ . h

Lời giải chi tiết

Từ Hình 10, ta thấy đáy của hình lăng trụ là một tứ giác, ta chia tứ giác đó thành 2 tam giác.

Tam giác ABC có chiều cao BM = 3 m và cạnh đáy AC = 5 m, diện tích tam giác ABC là:

SABC = \(\dfrac{1}{2}\). BM . AC = \(\dfrac{1}{2}\) . 3 . 5 = \(\dfrac{{15}}{2}\) (m2).

Tam giác ADC có chiều cao DN = 3 m và cạnh đáy AC = 5 m, diện tích tam giác ADC là:

SADC = \(\dfrac{1}{2}\) . DN . AC = \(\dfrac{1}{2}\) . 3 . 5 = \(\dfrac{{15}}{2}\) (m2).

Diện tích đáy của hình lăng trụ đã cho là: Sđ = SABC + SADC = \(\dfrac{{15}}{2}\)+ \(\dfrac{{15}}{2}\) = 15 (m2).

Thể tích của hình lăng trụ là: V = Sđ . h = 15 . 7 = 105 (m3).  

-- Mod Toán 7 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 5 trang 63 SBT Toán 7 Chân trời sáng tạo tập 1 - CTST HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF