Giải bài 4 trang 78 SGK Toán 7 Chân trời sáng tạo tập 2
Cho tam giác nhọn ABC có ba đường cao AB, BE, CF. Biết AD = BE = CF. Chứng minh rằng tam giác ABC đều.
Hướng dẫn giải chi tiết Bài 4
Phương pháp giải
- Ta chứng tam giác BFC = tam giác BEC
- Từ đó suy ra góc B = góc C
- Chứng minh tương tự suy ra được góc A = góc B = góc C
Lời giải chi tiết
Xét tam giác BFC và tam giác BEC có :
BC chung
FC = BE
\(\widehat {BFC} = \widehat {BEC} = {90^o}\)
( cạnh huyền – cạnh góc vuông)
\( \Rightarrow \widehat C = \widehat B\) ( 2 góc tương ứng ) (1)
Xét tam giác CFA và tam giác ADC ta có :
CF = AD
AC chung
\(\widehat {ADC} = \widehat {AFC} = {90^o}\)
(cạnh huyền – cạnh góc vuông)
\( \Rightarrow \widehat C = \widehat A\)(2 góc tương ứng ) (2)
Từ (1) và (2) \( \Rightarrow \widehat C = \widehat A = \widehat B\) \( \Rightarrow \)Tam giác ABC là tam giác đều do có 3 góc bằng nhau
-- Mod Toán 7 HỌC247
Bài tập SGK khác
Giải bài 2 trang 78 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 3 trang 78 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 1 trang 63 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 2 trang 63 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 3 trang 63 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 4 trang 63 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 5 trang 63 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.