OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Giải bài 14 trang 89 SBT Toán 7 Chân trời sáng tạo tập 1 - CTST

Giải bài 14 trang 89 SBT Toán 7 Chân trời sáng tạo tập 1

Cho định lí: “Nếu một đường thẳng cắt hai đường thẳng sao cho có một cặp góc so le trong bằng nhau thì các cặp góc đồng vị có được cũng bằng nhau”.

a) Hãy vẽ hình minh họa định lí trên.

b) Viết giả thiết và kết luận của định lí.

c) Hãy chứng minh định lí trên.

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài 14

Phương pháp giải

 

Lời giải chi tiết

a) Hình vẽ minh họa:

b) Viết giả thiết và kết luận bằng kí hiệu:

c) Chứng minh định lí:

• Vì \(\widehat {{A_1}}\) và \(\widehat {{A_3}}\) là hai góc đối đỉnh nên \(\widehat {{A_1}}\) = \(\widehat {{A_3}}\).

Mà \(\widehat {{A_3}}\) = \(\widehat {{B_1}}\) (giả thiết)

Suy ra \(\widehat {{A_1}}\) = \(\widehat {{B_1}}\).

Chứng minh tương tự ta có: \(\widehat {{A_3}}\) = \(\widehat {{B_3}}\) (=\(\widehat {{B_1}}\))

• Lại có \(\widehat {{A_1}}\) và \(\widehat {{A_2}}\) là hai góc kề bù nên:

\(\widehat {{A_1}}\) + \(\widehat {{A_2}}\) =180°

Suy ra \(\widehat {{A_2}}\) =180°− \(\widehat {{A_1}}\) (1)

\(\widehat {{B_1}}\) và \(\widehat {{B_2}}\) là hai góc kề bù nên:

\(\widehat {{B_1}}\) + \(\widehat {{B_2}}\) =180°

Suy ra \(\widehat {{B_2}}\) =180°− \(\widehat {{B_1}}\) (2)

Mà \(\widehat {{A_1}}\) = \(\widehat {{B_1}}\) (3)

Từ (1), (2) và (3) suy ra \(\widehat {{A_2}}\) = \(\widehat {{B_2}}\).

Chứng minh tương tự ta cũng có \(\widehat {{A_4}}\) = \(\widehat {{B_4}}\).

Vậy định lí được chứng minh

-- Mod Toán 7 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 14 trang 89 SBT Toán 7 Chân trời sáng tạo tập 1 - CTST HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF