Luyện tập 1 trang 120 SGK Toán 11 Kết nối tri thức tập 1
Xét tính liên tục của hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{ - x\;,x < 0}\\{0\;,\;x = 0}\\{{x^2},x > 0}\end{array}} \right.\) tại điểm \({x_0} = 0\).
Hướng dẫn giải chi tiết Luyện tập 1
Phương pháp giải:
Hàm số \(f\left( x \right)\) liên tục \({x_0}\) khi và chỉ khi
\(\mathop {\lim }\limits_{x \to {x_0^+}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0^- }} f\left( x \right) = f\left( {{x_0}} \right)\).
Lời giải chi tiết:
Ta có:
\(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} {x^2} = 0\)
\(\mathop {\lim }\limits_{x \to {0^-}} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} {(-x)} = 0\)
Suy ra,\(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right)\)
Vậy hàm số liên tục tại 0
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Mở đầu trang 119 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Hoạt động 1 trang 119 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Hoạt động 2 trang 120 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Luyện tập 2 trang 121 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Hoạt động 3 trang 121 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.14 trang 122 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.15 trang 122 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.16 trang 122 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.17 trang 122 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Bài tập 5.21 trang 86 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.22 trang 86 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.23 trang 86 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.24 trang 86 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.25 trang 86 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.