Hoạt động 3 trang 121 SGK Toán 11 Kết nối tri thức tập 1
Cho hai hàm số f(x) = x2 và g(x) = – x + 1.
a) Xét tính liên tục của hai hàm số trên tại x = 1.
b) Tính \(\mathop {{\rm{lim}}}\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right]\) và so sánh L với f(1) + g(1).
Hướng dẫn giải chi tiết Hoạt động 3
Phương pháp giải
HS áp dụng các quy tắc tính giới hạn của hàm số.
Lời giải chi tiết
a) Hàm số f(x) = x2 và g(x) = – x + 1 là các hàm đa thức nên nó liên tục trên ℝ.
Do đó, hai hàm số f(x) và g(x) đều liên tục tại x = 1.
b) Ta có: f(x) + g(x) = x2 + (– x + 1) = x2 – x + 1.
Do đó, \(\mathop {{\rm{lim}}}\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right]\).
Lại có, f(1) = 12 = 1; g(1) = – 1 + 1 = 0, do đó f(1) + g(1) = 1 + 0 = 1.
Vậy L = f(1) + g(1) = 1.
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Hoạt động 2 trang 120 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Luyện tập 2 trang 121 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.14 trang 122 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.15 trang 122 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.16 trang 122 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.17 trang 122 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Bài tập 5.21 trang 86 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.22 trang 86 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.23 trang 86 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.24 trang 86 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.25 trang 86 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.