Giải Bài 5.14 trang 122 SGK Toán 11 Kết nối tri thức tập 1
Cho \(f\left( x \right)\) và \(g\left( x \right)\) là các hàm số liên tục tại \(x = 1\). Biết \(f\left( 1 \right) = 2\) và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} \left[ {2f\left( x \right) - g\left( x \right)} \right] = 3\). Tính \(g\left( 1 \right)\).
Hướng dẫn giải chi tiết Bài 5.14
Phương pháp giải
Giả sử hai hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) liên tục tại điểm \({x_0}\). Khi đó:
+ Các hàm số \(y = f\left( x \right) + g\left( x \right),\;y = f\left( x \right) - g\left( x \right),\;y = f\left( x \right).g\left( x \right)\) liên tục tại \({x_0}\)
+ Hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}}\) liên tục tại \({x_0}\) nếu \(g\left( {{x_0}} \right) \ne 0\)
Lời giải chi tiết
Vì \(f\left( x \right)\) và \(g\left( x \right)\) liên tục tại \(x = 1\).
Suy ra \(2f\left( 1 \right) - g\left( 1 \right) = \mathop {\lim }\limits_{x \to 1^ -} \left[ {2f\left( x \right) - g\left( x \right)} \right] = 3\)
Suy ra \(g\left( 1 \right) = 1\).
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Luyện tập 2 trang 121 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Hoạt động 3 trang 121 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.15 trang 122 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.16 trang 122 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.17 trang 122 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Bài tập 5.21 trang 86 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.22 trang 86 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.23 trang 86 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.24 trang 86 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.25 trang 86 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.