Giải Bài 4 trang 60 SGK Toán 11 Chân trời sáng tạo tập 1
Ba số \(\frac{2}{{b - a}},\frac{1}{b},\frac{2}{{b - c}}\) theo thứ tự lập thành cấp số cộng. Chứng minh rằng ba số \(a,b,c\) theo thứ tự lập thành cấp số nhân.
Hướng dẫn giải chi tiết Bài 4
Phương pháp giải
Chứng minh \({b^2} = ac\).
Lời giải chi tiết
\(\begin{array}{l}\frac{2}{{b - a}} + \frac{2}{{b - c}} = 2.\frac{1}{b} \\\Leftrightarrow \frac{1}{{b - a}} + \frac{1}{{b - c}} = \frac{1}{b}\\ \Leftrightarrow \frac{{\left( {b - c} \right) + \left( {b - a} \right)}}{{\left( {b - a} \right)\left( {b - c} \right)}} = \frac{1}{b}\\ \Leftrightarrow \frac{{b - c + b - {\rm{a}}}}{{{b^2} - ab - bc + ac}} = \frac{1}{b} \\\Leftrightarrow \frac{{2b - c - {\rm{a}}}}{{{b^2} - ab - bc + ac}} = \frac{1}{b} \\\Leftrightarrow b\left( {2b - c - {\rm{a}}} \right) = {b^2} - ab - bc + ac\\ \Leftrightarrow 2{b^2} - bc - {\rm{ab}} = {b^2} - ab - bc + ac \\\Leftrightarrow {b^2} = {\rm{a}}c\end{array}\).
Vậy ba số \(a,b,c\) theo thứ tự lập thành cấp số nhân.
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Giải Bài 2 trang 60 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 3 trang 60 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 5 trang 60 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 6 trang 60 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 7 trang 61 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 8 trang 61 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Bài tập 1 trang 63 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 2 trang 63 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 3 trang 63 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 4 trang 63 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 5 trang 63 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 6 trang 63 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 7 trang 63 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 8 trang 63 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.