Giải Bài 2 trang 60 SGK Toán 11 Chân trời sáng tạo tập 1
Tìm số hạng đầu và công bội của cấp số nhân \(\left( {{u_n}} \right)\), biết:
a) \(\left\{ \begin{array}{l}{u_5} - {u_1} = 15\\{u_4} - {u_2} = 6\end{array} \right.\);
b) \(\left\{ \begin{array}{l}{u_1} - {u_3} + {u_5} = 65\\{u_1} + {u_7} = 325\end{array} \right.\).
Hướng dẫn giải chi tiết Bài 2
Phương pháp giải
Sử dụng công thức số hạng tổng quát của cấp số nhân có số hạng đầu \({u_1}\) và công bội \(q\) thì số hạng tổng quát là: \({u_n} = {u_1}.{q^{n - 1}},n \ge 2\).
Lời giải chi tiết
\(\left\{ \begin{array}{l}{u_5} - {u_1} = 15\\{u_4} - {u_2} = 6\end{array} \right. \)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^4} - {u_1} = 15\\{u_1}.{q^3} - {u_1}.q = 6\end{array} \right. \)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1}.\left( {{q^4} - 1} \right) = 15\\{u_1}.\left( {{q^3} - q} \right) = 6\end{array} \right. \)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1}.\left( {{q^2} - 1} \right)\left( {{q^2} + 1} \right) = 15\left( 1 \right)\\{u_1}.q\left( {{q^2} - 1} \right) = 6\left( 2 \right)\end{array} \right.\)
Do \(q = \pm 1\) không là nghiệm của hệ phương trình nên chia vế với vế của (2) cho (1) ta được:
\(\frac{q}{{{q^2} + 1}} = \frac{6}{{15}} \)\( \Leftrightarrow 15q = 6\left( {{q^2} + 1} \right) \Leftrightarrow 15q = 6{q^2} + 6 \)\( \Leftrightarrow 6{q^2} - 15q + 6 = 0 \)\( \Leftrightarrow \left[ \begin{array}{l}q = \frac{1}{2}\\q = 2\end{array} \right.\)
Với \(q = \frac{1}{2}\) thế vào (2) ta được: \({u_1}.\frac{1}{2}\left( {{{\left( {\frac{1}{2}} \right)}^2} - 1} \right) = 6 \Leftrightarrow {u_1} = - 16\).
Với \(q = 2\) thế vào (2) ta được: \({u_1}.2\left( {{2^2} - 1} \right) = 6 \Leftrightarrow {u_1} = 1\).
Vậy có hai cấp số nhân \(\left( {{u_n}} \right)\) thoả mãn:
‒ Cấp số nhân có số hạng đầu \({u_1} = 1\) và công bội \(q = 2\).
‒ Cấp số nhân có số hạng đầu \({u_1} = - 16\) và công bội \(q = \frac{1}{2}\).
b)
\(\left\{ \begin{array}{l}{u_1} - {u_3} + {u_5} = 65\\{u_1} + {u_7} = 325\end{array} \right. \)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} - {u_1}.{q^2} + {u_1}.{q^4} = 65\\{u_1} + {u_1}.{q^6} = 325\end{array} \right. \)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {1 - {q^2} + {q^4}} \right) = 65\left( 1 \right)\\{u_1}\left( {1 + {q^6}} \right) = 325\left( 2 \right)\end{array} \right.\)
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Vận dụng 4 trang 60 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 1 trang 60 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 3 trang 60 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 4 trang 60 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 5 trang 60 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 6 trang 60 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 7 trang 61 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 8 trang 61 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Bài tập 1 trang 63 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 2 trang 63 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 3 trang 63 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 4 trang 63 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 5 trang 63 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 6 trang 63 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 7 trang 63 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 8 trang 63 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.