OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Giải Bài 1 trang 111 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Giải Bài 1 trang 111 SGK Toán 11 Chân trời sáng tạo tập 1

Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình bình hành có \(O\) là giao điểm hai đường chéo. Cho \(M\) là trung điểm của \(SC\).

a) Chứng minh đường thẳng \(OM\) song song với hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBA} \right)\);

b) Tìm giao tuyến của hai mặt phẳng \(\left( {OMD} \right)\) và \(\left( {SAD} \right)\).

ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài 1

Phương pháp giải

– Để chứng minh đường thẳng song song với mặt phẳng, ta chứng minh đường thẳng đấy không nằm trong mặt phẳng và song song với một đường thẳng nằm trong mặt phẳng.

‒ Để tìm giao tuyến của hai mặt phẳng, ta có 2 cách:

+ Cách 1: Tìm 2 điểm chung phân biệt. Giao tuyến là đường thẳng đi qua hai điểm chung.

+ Cách 2: Tìm 1 điểm chung và 2 đường thẳng song song nằm trên mỗi mặt phẳng. Giao tuyến là đường thẳng đi qua điểm chung và song song với hai đường thẳng đó.

 

Lời giải chi tiết

 

a) \(M\) là trung điểm của \(SC\)

\(O\) là trung điểm của \(AC\) (theo tính chất hình bình hành)

\( \Rightarrow OM\) là đường trung bình của tam giác \(SAC\)

\(\left. \begin{array}{l} \Rightarrow OM\parallel SA\\SA \subset \left( {SA{\rm{D}}} \right)\end{array} \right\} \Rightarrow OM\parallel \left( {SA{\rm{D}}} \right)\)

Ta có:

\(\left. \begin{array}{l}OM\parallel SA\\SA \subset \left( {SBA} \right)\end{array} \right\} \Rightarrow OM\parallel \left( {SBA} \right)\)

 

b) Ta có:

\(\left. \begin{array}{l}D \in \left( {OM{\rm{D}}} \right) \cap \left( {SA{\rm{D}}} \right)\\OM \subset \left( {OM{\rm{D}}} \right)\\SA \subset \left( {SA{\rm{D}}} \right)\\OM\parallel SA\end{array} \right\}\)

\( \Rightarrow \) Giao tuyến của hai mặt phẳng \(\left( {OMD} \right)\) và \(\left( {SAD} \right)\) là đường thẳng \(d\) đi qua điểm \(D\), song song với \(OM\) và \(SA\).

 

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Giải Bài 1 trang 111 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF