OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 3 trang 51 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 3 trang 51 SBT Toán 11 Tập 2 Chân trời sáng tạo

Cho tứ diện ABCD có AB = CD, AC = BD, AD = BC.

a) Chứng minh đoạn nối các trung điểm của các cặp cạnh đối thì vuông góc với hai cạnh đó.

b) Chứng minh hai đoạn nối các trung điểm của các cặp cạnh đối thì vuông góc với nhau.

ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài tập 3

Cho tứ diện ABCD có AB = CD AC = BD AD = BC

a) Gọi E, F lần lượt là trung điểm của các cạnh AD, BC.

Xét ∆BAD và ∆CDA, ta có:

\(\left\{ \begin{matrix} BA=CD \\ \begin{align} & BD=CA \\ & AD~~chung \\ \end{align} \\ \end{matrix} \right.\)

Do đó ∆BAD = ∆CDA (c.c.c)

Ta có BE = CE (2 đường trung tuyến ứng với cạnh AD).

Suy ra ∆BEC cân tại E nên EF ⊥ BC.

Chứng minh tương tự, ta có: EF ⊥ AD.

Vậy đoạn nối các trung điểm của các cặp cạnh đối thì vuông góc với hai cạnh đó.

b)Gọi G, H lần lượt là các trung điểm của 2 cạnh AB và CD.

Theo tính chất đường trung bình, ta có:

\(\left\{ \begin{matrix} EH=GF=\frac{1}{2}AC \\ \begin{align} & EG=HF=\frac{1}{2}BD \\ & AC=BD~~(gt) \\ \end{align} \\ \end{matrix} \right.\)

EH = GF = EG = HF

Khi đó, EHFG là hình thoi, suy ra EF ⊥ GH.

Vậy hai đoạn nối các trung điểm của các cặp cạnh đối thì vuông góc với nhau.

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 3 trang 51 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF