Giải bài 75 trang 98 SBT Toán 10 Cánh diều tập 2
Trong mặt phẳng toạ độ Oxy, cho hai đường thẳng \({\Delta _1}:\left\{ \begin{array}{l}x = 2 + \sqrt 3 t\\y = - 1 + 3t\end{array} \right.\) và \({\Delta _2}:\left\{ \begin{array}{l}x = 3 - \sqrt 3 t'\\y = - t'\end{array} \right.\) Số đo góc giữa hai đường thẳng ∆1 và ∆2 là:
A. 300
B. 450
C. 900
D. 600
Hướng dẫn giải chi tiết Bài 75
Phương pháp giải
Bước 1: Tìm VTCP của 2 đường thẳng ∆1 và ∆2
Bước 2: Sử dụng công thức tính cosin góc giữa hai vectơ:
cos \(\left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{{x_1}.{x_2} + {y_1}.{y_2}}}{{\sqrt {x_1^2 + y_1^2} .\sqrt {x_2^2 + y_2^2} }}\) với \(\overrightarrow u ({x_1};{y_1}),\overrightarrow v ({x_2};{y_2})\) để tính góc giữa hai VTCP rồi suy ra góc giữa ∆1 và ∆2
Lời giải chi tiết
∆1 có VTCP là \(\overrightarrow u = (\sqrt 3 ;3)\) ; ∆2 có VTCP là \(\overrightarrow v = ( - \sqrt 3 ; - 1)\)
Ta có: \(\left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\sqrt 3 .\left( { - \sqrt 3 } \right) + 3.( - 1)}}{{\sqrt {{{\left( {\sqrt 3 } \right)}^2} + {3^2}} .\sqrt {{{\left( { - \sqrt 3 } \right)}^2} + {{( - 1)}^2}} }}\)\( = - \frac{{\sqrt 3 }}{2}\)\( \Rightarrow \left( {\overrightarrow u ,\overrightarrow v } \right) = {150^0}\)
Vậy góc giữa ∆1 và ∆2 bằng 300
Chọn A
-- Mod Toán 10 HỌC247
Bài tập SGK khác
Giải bài 73 trang 98 SBT Toán 10 Cánh diều tập 2 - CD
Giải bài 74 trang 98 SBT Toán 10 Cánh diều tập 2 - CD
Giải bài 76 trang 98 SBT Toán 10 Cánh diều tập 2 - CD
Giải bài 77 trang 98 SBT Toán 10 Cánh diều tập 2 - CD
Giải bài 78 trang 98 SBT Toán 10 Cánh diều tập 2 - CD
Giải bài 79 trang 98 SBT Toán 10 Cánh diều tập 2 - CD
Giải bài 80 trang 99 SBT Toán 10 Cánh diều tập 2 - CD
Giải bài 81 trang 99 SBT Toán 10 Cánh diều tập 2 - CD
Giải bài 82 trang 99 SBT Toán 10 Cánh diều tập 2 - CD
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.