Giải bài 7.55 trang 49 SBT Toán 10 Kết nối tri thức tập 2
Cho tam giác ABC với \(A\left( {1; - 1} \right),B\left( {3;5} \right),C\left( { - 2;4} \right)\)
a) Viết phương trình tham số của đường thẳng AB
b) Viết phương trình đường cao AH của tam giác ABC
c) Tính khoảng cách từ điểm A đến đường thẳng BC
d) Tính sin của góc giữa hai đường thẳng AB và AC
Hướng dẫn giải chi tiết Bài 7.55
Phương pháp giải
+ Phương trình tham số của AB đi qua A và có vector chỉ phương là \(\overrightarrow {AB} \)
+ Phương trình đường cao AH đi qua A và có vector pháp tuyến là \(\overrightarrow {BC} \)
+ Khoảng cách từ 1 điểm \(A\left( {{x_0};{y_0}} \right)\) đến đường thẳng \(d:ax + by + c = 0\) là:
\(d\left( {A,d} \right) = \frac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)
+ \(\left( {a;b} \right)\) và \(\left( {c;d} \right)\) cùng là vector pháp tuyến hoặc chỉ phương của hai đường thẳng \({d_1}\) và \({d_2}\). Góc giữa hai đường thẳng này được tính qua công thức: \(cos\varphi = \frac{{\left| {ac + bd} \right|}}{{\sqrt {{a^2} + {b^2}} \sqrt {{c^2} + {d^2}} }}\)
Lời giải chi tiết
a) Phương trình tham số của AB đi qua A và có vector chỉ phương là \(\overrightarrow {AB} = \left( {2;6} \right) = 2\left( {1;3} \right)\)
Phương trình tham số của AB đi qua \(A\left( {1; - 1} \right)\) và có vector chỉ phương là \(\left( {1;3} \right)\) là :\(\left\{ \begin{array}{l}x = 1 + t\\y = - 1 - 3t\end{array} \right.\)
b) Phương trình đường cao AH đi qua A và có vector pháp tuyến là \(\overrightarrow {BC} = \left( { - 5; - 1} \right)\) là: \(5\left( {x - 1} \right) + 1\left( {y + 1} \right) = 0 \Rightarrow 5x + y - 4 = 0\)
c) Viết phương trình đường thẳng BC:
+ \(\overrightarrow {BC} = \left( { - 5; - 1} \right) \Rightarrow \overrightarrow {{n_{BC}}} = \left( {1; - 5} \right) \Rightarrow BC:1\left( {x - 3} \right) - 5\left( {y - 5} \right) = 0 \Rightarrow BC:x - 5y + 22 = 0\)
+ \(d\left( {A,BC} \right) = \frac{{\left| {1 - 5\left( { - 1} \right) + 22} \right|}}{{\sqrt {{1^2} + {5^2}} }} = \frac{{28}}{{\sqrt {26} }} = \frac{{14\sqrt {26} }}{{13}}\)
d) \(\overrightarrow {AB} = \left( {2;6} \right),\overrightarrow {AC} = \left( { - 3;5} \right) \Rightarrow cos\left( {AB,AC} \right) = \frac{{\left| {2.\left( { - 3} \right) + 6.5} \right|}}{{\sqrt {{2^2} + {6^2}} .\sqrt {{{\left( { - 3} \right)}^2} + {5^2}} }} = \frac{6}{{\sqrt {85} }}\)
\( \Rightarrow \sin \alpha = \sqrt {1 - co{s^2}\alpha } = \frac{7}{{\sqrt {85} }}\)
-- Mod Toán 10 HỌC247
Bài tập SGK khác
Giải bài 7.53 trang 49 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.54 trang 49 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.56 trang 50 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.57 trang 50 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.58 trang 50 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.59 trang 50 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.60 trang 50 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.61 trang 50 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.