Giải bài 5 trang 27 SBT Toán 10 Cánh diều tập 2
Một sân bóng đá có dạng hình chữ nhật với chiều dài và chiều rộng của sân lần lượt là 105 m và 68 m. Khoảng cách xa nhất giữa hai vị trí trên sân đúng bằng độ dài đường chéo của sân. Tìm một giá trị gần đúng (theo đơn vị mét) của độ dài đường chéo sân và tìm độ chính xác, sai số tương đối của số gần đúng đó.
Hướng dẫn giải chi tiết Bài 5
Phương pháp giải
Gọi \(x\) là độ dài đường chéo của sân bóng. Tính \(x\) và tìm độ chính xác, sai số tương đối của \(x\)
Lời giải chi tiết
Gọi \(x\) là độ dài đường chéo của sân bóng. Áp dụng định lý Pytago, ta có:
\(x = \sqrt {{{105}^2} + {{68}^2}} = \sqrt {15.649} = 125,09596...\)
Lấy một giá trị gần đúng của \(x\) là 125,1, ta có: \(125,09 < x < 125,1\)
\( \Rightarrow \left| {x - 125,1} \right| < \left| {125,09 - 125,1} \right| = 0,01\)
Vậy độ dài sân bóng có thể lấy bằng 125,1 với độ chính xác \(d = 0,01\)
Sai số tương đối của 125,1 là \({\delta _{125,1}} = \frac{{{\Delta _{125,1}}}}{{\left| {125,1} \right|}} < \frac{{0,01}}{{125,1}} \approx 0,08\% \)
-- Mod Toán 10 HỌC247
Bài tập SGK khác
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.