Giải bài 4.31 trang 65 SBT Toán 10 Kết nối tri thức tập 1
Cho tam giác \(ABC\) có \(\widehat A < {90^ \circ }.\) Dựng ra phía ngoài tam giác hai tam giác vuông cân đỉnh \(A\) là \(ABD\) và \(ACE.\) Gọi \(M,\,\,N,\,\,P\) theo thứ tự là trung điểm \(BC,\,\,BD,\,\,CE.\) Chứng minh rằng:
a) \(AM\) vuông góc với \(DE.\)
b) \(BE\) vuông góc với \(CD.\)
c) Tam giác \(MNP\) là một tam giác vuông cân.
Hướng dẫn giải chi tiết Bài 4.31
Phương pháp giải
- Tính các vectơ \(\overrightarrow {AM} \) và \(\overrightarrow {DE} \) xong chứng minh tích vô hướng \(\overrightarrow {AM} .\overrightarrow {DE} = 0\)
- Tính các vectơ \(\overrightarrow {BE} \) và \(\overrightarrow {CD} \) xong chứng minh tích vô hướng \(\overrightarrow {BE} .\overrightarrow {CD} = 0\)
- Chứng minh \(MN\)//\(CD\) và \(MP\)//\(BE\)
Lời giải chi tiết
a) Ta có: \(\overrightarrow {DE} = \overrightarrow {AE} - \overrightarrow {AD} \) và \(\overrightarrow {AM} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\)
\( \Rightarrow \overrightarrow {AM} .\overrightarrow {DE} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\left( {\overrightarrow {AE} - \overrightarrow {AD} } \right)\)
\(\begin{array}{l} = \frac{1}{2}\left( {\overrightarrow {AB} .\overrightarrow {AE} - \overrightarrow {AB} .\overrightarrow {AD} + \overrightarrow {AC} .\overrightarrow {AE} - \overrightarrow {AC} .\overrightarrow {AD} } \right)\\ = \frac{1}{2}\left( {\overrightarrow {AB} .\overrightarrow {AE} - \overrightarrow {AC} .\overrightarrow {AD} } \right)\\ = \frac{1}{2}\left( {AB.AE.\cos \widehat {BAE} - AC.AD.\cos \widehat {CAD}} \right) = 0\end{array}\)
\( \Rightarrow \) \(\overrightarrow {AM} \bot \overrightarrow {DE} \) \( \Rightarrow \) \(AM \bot DE\)
b) Ta có: \(\overrightarrow {BE} = \overrightarrow {AE} - \overrightarrow {AB} \) và \(\overrightarrow {CD} = \overrightarrow {AD} - \overrightarrow {AC} \)
\( \Rightarrow \) \(\overrightarrow {BE} .\overrightarrow {CD} = \left( {\overrightarrow {AE} - \overrightarrow {AB} } \right)\left( {\overrightarrow {AD} - \overrightarrow {AC} } \right)\)
\(\begin{array}{l} = \overrightarrow {AE} .\overrightarrow {AD} - \overrightarrow {AE} .\overrightarrow {AC} - \overrightarrow {AB} .\overrightarrow {AD} + \overrightarrow {AB} .\overrightarrow {AC} \\ = \overrightarrow {AE} .\overrightarrow {AD} + \overrightarrow {AB} .\overrightarrow {AC} \\ = AE.AD.\cos \widehat {DAE} + AB.AC.\cos \widehat {BAC}\\ = AE.AD.\cos \widehat {DAE} + AB.AC.\cos \left( {{{180}^ \circ } - \widehat {DAE}} \right) = 0\end{array}\)
\( \Rightarrow \) \(\overrightarrow {BE} \bot \overrightarrow {CD} \) \( \Rightarrow \) \(BE \bot CD\)
c) Ta có: \(MN\) và \(MP\) lần lượt là đường trung bình của \(\Delta BCD\) và \(\Delta ACE\)
\( \Rightarrow \) \(MN\)//\(CD\) và \(MP\)//\(BE\)
mặt khác \(CD \bot BE\) (cm câu b)
\( \Rightarrow \) \(MN \bot MP\)
\( \Rightarrow \) \(\Delta MNP\) vuông tại \(M\)
-- Mod Toán 10 HỌC247
Bài tập SGK khác
Giải bài 4.29 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.30 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.32 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.33 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.34 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.35 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.36 trang 66 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.37 trang 66 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.38 trang 66 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.