Giải bài 3.45 trang 44 SBT Toán 10 Kết nối tri thức tập 1
Cho tam giác \(ABC\) có \(\widehat B = {15^ \circ },\,\,\widehat C = {30^ \circ },\,\,c = 2.\)
a) Tính số đo góc \(A\) và độ dài các cạnh \(a,b.\)
b) Tính diện tích và bán kính đường tròn ngoại tiếp của tam giác.
c) Lấy điểm \(D\) thuộc cạnh \(AB\) sao cho \(\widehat {BCD} = \widehat {DCA}\) (tức \(CD\) là tia phân giác của \(\widehat {BCA}\)). Tính độ dài \(CD.\)
Hướng dẫn giải chi tiết Bài 3.45
Phương pháp giải
- Tính \(\widehat A = {180^ \circ } - \widehat B - \widehat C.\)
- Áp dụng định lý sin để tính \(a,\,\,b,\,\,R\): \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R.\)
- Diện tích \(\Delta ABC\): \(S = \frac{1}{2}ac.\sin B\)
Lời giải chi tiết
a) Xét \(\widehat A = {180^ \circ } - \widehat B - \widehat C = {180^ \circ } - {15^ \circ } - {30^ \circ } = {135^ \circ }.\)
Áp dụng định lý sin, ta có:
\(\left\{ {\begin{array}{*{20}{c}}{\frac{a}{{\sin A}} = \frac{c}{{\sin C}}}\\{\frac{b}{{\sin B}} = \frac{c}{{\sin C}}}\end{array}\,\, \Rightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{\frac{a}{{\sin {{135}^ \circ }}} = \frac{2}{{\sin {{30}^ \circ }}}}\\{\frac{b}{{\sin {{15}^ \circ }}} = \frac{2}{{\sin {{30}^ \circ }}}}\end{array}\,\, \Rightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{a = \frac{{2\sin {{135}^ \circ }}}{{\sin {{30}^ \circ }}} = 2\sqrt 2 }\\{b = \frac{{2\sin {{15}^ \circ }}}{{\sin {{30}^ \circ }}} = \sqrt 6 - \sqrt 2 }\end{array}} \right.} \right.} \right.\)
b) Diện tích \(\Delta ABC\) là: \(S = \frac{1}{2}ac.\sin B = \frac{1}{2}.2\sqrt 2 .2.\sin {15^ \circ } = \sqrt 3 - 1\)
Bán kính đường tròn ngoại tiếp \(\Delta ABC\) là:
Áp dụng định lý sin, ta có:
\(\frac{c}{{\sin C}} = 2R\,\, \Leftrightarrow \,\,\frac{2}{{\sin {{30}^ \circ }}} = 2R\,\, \Leftrightarrow \,\,R = 2.\)
c) Ta có: \(CD\) là tia phân giác của \(\widehat {ACB}\)
\( \Rightarrow \) \(\widehat {ACD} = \widehat {BCD} = \frac{1}{2}\widehat {ACB} = {15^ \circ }\)
Gọi \(I\) là trung điểm của \(BC\) và \(IB = IC = \sqrt 2 .\)
Xét \(\Delta BCD\) có \(\widehat {DCB} = \widehat B = {15^ \circ }\)
\( \Rightarrow \) \(\Delta BCD\) cân tại \(D.\)
Mặt khác \(I\) là trung điểm của \(BC.\)
\( \Rightarrow \) \(DI \bot BC\)
Xét \(\Delta CDI\) vuông tại \(I\) có: \(CD = \frac{{IC}}{{\sin \widehat {DCB}}} = \frac{{\sqrt 2 }}{{\sin {{15}^ \circ }}} = 2 + 2\sqrt 3 .\)
-- Mod Toán 10 HỌC247
Bài tập SGK khác
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.