OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Giải bài 2 trang 9 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 2 trang 9 SGK Toán 10 Chân trời sáng tạo tập 2

Xác định giá trị của m  để các đa thức sau là tam thức bậc hai

a) \(\left( {m + 1} \right){x^2} + 2x + m\)

b) \(m{x^3} + 2{x^2} - x + m\)

c) \( - 5{x^2} + 2x - m + 1\)

ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết

Phương pháp giải

Bước 1: Xác định \(a\) là hệ số của \({x^2}\)

Bước 2: Đa thức \(a{x^2} + bx + c\)được gọi là tam thức bậc hai khi \(a \ne 0\)

Lời giải chi tiết

a) Ta có: \(a = m + 1\)

Để đa thức \(\left( {m + 1} \right){x^2} + 2x + m\) là tam thức bậc hai khi và chỉ khi \(m + 1 \ne 0\)

\( \Leftrightarrow m \ne  - 1\)

Vậy khi \(m \ne  - 1\) thì đa thức \(\left( {m + 1} \right){x^2} + 2x + m\)là tam thức bậc hai

b) Ta có: \(a = 2\)

Để đa thức \(m{x^3} + 2{x^2} - x + m\) là tam thức bậc hai khi và chỉ khi \(m = 0\)

Vậy khi \(m = 0\) thì đa thức \(m{x^3} + 2{x^2} - x + m\)là tam thức bậc hai

c) Ta có \(a =  - 5\)

Hệ số không ảnh hưởng đến tam thức bậc hai

Vậy đa thức \( - 5{x^2} + 2x - m + 1\) là tam thức bậc hai với mọi m

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 2 trang 9 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF