Giải bài 8 trang 10 SGK Toán 10 Chân trời sáng tạo tập 2
Tìm giá trị của m để:
a) \(2{x^2} + 3x + m + 1 > 0\) với mọi \(x \in \mathbb{R}\);
b) \(m{x^2} + 5x - 3 \le 0\) với mọi \(x \in \mathbb{R}\)
Hướng dẫn giải chi tiết Bài 8
Phương pháp giải
a) Bước 1: Tính \(\Delta \) và xác định dấu của a
Bước 2: \(f\left( x \right) > 0\) với mọi \(x \in \mathbb{R}\) khi \(a > 0\) và \(\Delta < 0\)
b) Bước 1: Tính \(\Delta \) và xác định dấu của a
Bước 2: \(f\left( x \right) \le 0\) với mọi \(x \in \mathbb{R}\) khi \(a < 0\) và \(\Delta \le 0\)
Lời giải chi tiết
a) Tam thức \(2{x^2} + 3x + m + 1\) có \(\Delta = {3^2} - 4.2.\left( {m + 1} \right) = 1 - 8m\)
Vì \(a = 2 > 0\) nên để \(2{x^2} + 3x + m + 1 > 0\) với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(\Delta < 0 \Leftrightarrow 1 - 8m < 0 \Leftrightarrow m > \frac{1}{8}\)
Vậy khi \(m > \frac{1}{8}\) thì \(2{x^2} + 3x + m + 1 > 0\) với mọi \(x \in \mathbb{R}\)
b) Tam thức \(m{x^2} + 5x - 3\) có \(\Delta = {5^2} - 4.m.\left( { - 3} \right) = 25 + 12m\)
Đề \(m{x^2} + 5x - 3 \le 0\) với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(m < 0\) và \(\Delta = 25 + 12m \le 0 \Leftrightarrow m \le - \frac{{25}}{{12}}\)
Vậy \(m{x^2} + 5x - 3 \le 0\) với mọi \(x \in \mathbb{R}\) khi \(m \le - \frac{{25}}{{12}}\)
-- Mod Toán 10 HỌC247
Bài tập SGK khác
Giải bài 6 trang 10 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 7 trang 10 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 1 trang 8 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 2 trang 9 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 3 trang 9 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 4 trang 9 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 5 trang 9 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 6 trang 9 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 7 trang 10 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 8 trang 10 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.