OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chất phóng xạ pôlôni \(_{84}^{210}Po\) phát ra tia α và biến đổi thành chì \(_{82}^{206}Pb\).

Cho chu kì bán rã của \(_{84}^{210}Po\) là 138 ngày. Ban đầu (t = 0) có một mẫu pôlôni nguyên chất. Tại thời điểm t1, tỉ số giữa số hạt nhân pôlôni và số hạt nhân chì trong mẫu là 1/3. Tại thời điểm t2 = t1 + 276 ngày, tỉ số giữa số hạt nhân pôlôni và số hạt nhân chì trong mẫu là

A. 1/15.                       B. 1/16. 

C. 1/9.                         D. 1/25. 

  bởi Trinh Hung 25/05/2020
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  •  

    Đến thời điểm t, số hạt nhân Po210 còn lại và số hạt nhân chì Pb208 tạo thành lần lượt là:    

    \(\begin{array}{l} \left\{ \begin{array}{l} {N_{P0}} = {N_0}{e^{^{ - \frac{{\ln 2}}{T}t}}}\\ {N_{Pb}} = \Delta N = {N_0}\left( {1 - {e^{ - \frac{{\ln 2}}{T}t}}} \right) \end{array} \right.\\ \Rightarrow \frac{{{N_{Pb}}}}{{{N_{P0}}}} = {e^{\frac{{\ln 2}}{T}t}} - 1\\ \Rightarrow \left\{ \begin{array}{l} {\left( {\frac{{{N_{Pb}}}}{{{N_{P0}}}}} \right)_{{t_1}}} = {e^{\frac{{\ln 2}}{T}{t_1}}} - 1 = 3 \Rightarrow {e^{\frac{{\ln 2}}{T}{t_1}}} = 4\\ {\left( {\frac{{{N_{Pb}}}}{{{N_{Po}}}}} \right)_2} = {e^{\frac{{\ln 1}}{T}{t_2}}} - 1 = {e^{\frac{{\ln 2}}{T}\left( {{t_1} + 276} \right)}} - 1 \end{array} \right.\\ \Rightarrow {\left( {\frac{{{N_{Pb}}}}{{{N_{Po}}}}} \right)_2} = {e^{\frac{{\ln 2}}{T}{t_1}}}.4 - 1 = 15\\ \Rightarrow {\left( {\frac{{{N_P}}}{{{N_{Pb}}}}} \right)_{{t_2}}} = \frac{1}{{15}} \end{array}\)

     Chọn A.

      bởi thu thủy 26/05/2020
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF