OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Tìm phần thực, phần ảo của số phức \(w = 2z +1\)

Cho số phức z thỏa mãn \((1+i)z+(3-i)\bar{z}=2-6i\) Tìm phần thực, phần ảo của số phức \(w = 2z +1\).

  bởi na na 08/02/2017
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Giả sử  \(z=a+bi(a,b\in R)\Rightarrow \bar{z}=a-bi\) khi đó:
    \((1+i)z+(3-i)\bar{z}=2-6i\Leftrightarrow (1+i)(a+bi)+(3-i)(a-bi)=2-6i\)
    \(\Leftrightarrow 4a-2b-2bi=2+6i\)
    \(\Leftrightarrow \left\{\begin{matrix} 4a-2b=2\\ -2b=-6 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=2\\ b=3 \end{matrix}\right.\Rightarrow z=2+3i\)
    Do đó \(w = 2z+1 = 2 (2+3i) = 5+6i\)
    Vậy số phức w có phần thực là 5, phần ảo là 6.

      bởi Thu Hang 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF