Giải hệ phương trình sau trên tập số thực: \(\left\{\begin{matrix} 2\sqrt{x^2+5}=2\sqrt{2y}+x^2
Giải hệ phương trình sau trên tập số thực: \(\left\{\begin{matrix} 2\sqrt{x^2+5}=2\sqrt{2y}+x^2\\ x+3\sqrt{xy+x-y^2-y}=5y+4 \end{matrix}\right.\)
Câu trả lời (1)
-
\(\left\{\begin{matrix} 2\sqrt{x^2+5}=2\sqrt{2y}+x^2 \ \ \ \ \ (1)\\ x+3\sqrt{xy+x-y^2-y}=5y+4\ \ \ (2) \end{matrix}\right.\)
Điều kiện \(xy+x-y^2-y\geq 0\) và \(y\geq 0\)
- Với điều kiện trên:
\((2)\Leftrightarrow (x-2y-1)+3(\sqrt{xy+x-y^2-y}-y-1)=0\)
\(\Leftrightarrow (x-2y-1)+\left [ 1+\frac{3(y+1)}{\sqrt{xy+x-y^2-y}-y-1} \right ]=0\)
\(\Leftrightarrow x-2y-1=0\). (Vì với x, y thỏa mãn \(xy+x-y^2\geq 0\) và \(y\geq 0\) thì \(\left [ 1+\frac{3(y+1)}{\sqrt{xy+x-y^2-y}-y-1} \right ]> 0\))
Thế 2y = x – 1 vào (1) ta có
\(2\sqrt{x^2+5}=2\sqrt{x-1}+x^2\Leftrightarrow 2\frac{x^2-4}{\sqrt{x^2+5}+3}+(x-2)(x+2)\)
\(\Leftrightarrow (x-2)\left [ -\frac{2(x+2)}{\sqrt{x^2+5}+3}+\frac{2}{\sqrt{x-1}+1}+(x+2) \right ]=0 \ \ (3)\)
Ta có \(\forall x\geq 1\)
\(-\frac{2(x+2)}{\sqrt{x^2+5}+3}+\frac{2}{\sqrt{x-1}+1}+(x+2)\)
\(=\frac{2}{\sqrt{x-1}+1}+(x+2)(1-\frac{2}{\sqrt{x^2+5}+3})> 0\)
Nên (3) có nghiệm duy nhất x = 2 . Vậy hệ phương trình đã cho có nghiệm duy nhất \((x;y)=\left ( 2;\frac{1}{2} \right )\)bởi Thiên Mai 09/02/2017Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
a) Hai góc cùng phụ một góc thứ ba thì .?.
b) Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì ?
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời