OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Giải hệ phương trình: \(\left\{\begin{matrix} (x+y-1)(3y^2+xy-2y+2)=0

Giải hệ phương trình: \(\left\{\begin{matrix} (x+y-1)(3y^2+xy-2y+2)=0\\ x^2y-4xy-3y^2+2y-x+1=0 \end{matrix}\right.\)

  bởi Nguyễn Xuân Ngạn 08/02/2017
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Nhận xét: việc giải hệ này tương đối dễ với dữ kiện x + y - 1 = 0, tuy nhiên tại dữ kiện còn lại lại gây khó khăn cho ta đôi chút nhưng cũng có thể giải quyết được khi nhận xét được phần chung 3y2 -y ở cả hai phương trình.
    \(\left\{\begin{matrix} (x+y-1)(3y^2+xy-2y+2)=0\\ x^2y-4xy-3y^2+2y-x+1=0 \end{matrix}\right.\)
    Trường hợp 1: \(\small \left\{\begin{matrix} x+y-1=0 \ \ \ \ \ \ \ (1)\\ x^2y-4xy-3y^2+2y-x+1=0 \ \ (2) \end{matrix}\right.\)
    Thay (1) vào (2) ta được phương trình: \(\small -x^3+2x^2-x=0\Leftrightarrow \bigg \lbrack\begin{matrix} x=0,y=1\\ x=1,y=0 \end{matrix}\)
    Trường hợp 2: \(\small \left\{\begin{matrix} 3y^2+xy-2y+2=0\\ x^2y-4xy-3y^2+2y-x+1=0 \end{matrix}\right.\)
    Cộng vế theo vế của hai phương trình ta thu được phương trình sau: \(\small x^2y-3xy-x+3=0\)
    Với y = 0 không phải là nghiệm của hệ nên \(\small x^2y-3xy-x+3=0\Leftrightarrow \bigg \lbrack\begin{matrix} x=3\\ x=\frac{1}{y} \end{matrix}\)

    • \(\small x=3\Rightarrow 3y^2+3y-2y+2=0 \ \ \ \ (vn)\)
    • \(\small x=\frac{1}{y}\Rightarrow 3y^2+1-2y+2=0 \ \ \ \ (vn)\)

    Vậy hệ phương trình có nghiệm \(\small \left\{\begin{matrix} x=0\\ y=1 \end{matrix}\right., \left\{\begin{matrix} x=1\\ y=0 \end{matrix}\right.\)

      bởi Hong Van 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF