OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Giải hệ phương trình \(\left\{\begin{matrix} 4x^2=(\sqrt{x^2+1}+1)(x^2-y^3+3y-2)

Giải hệ phương trình \(\left\{\begin{matrix} 4x^2=(\sqrt{x^2+1}+1)(x^2-y^3+3y-2)\\ (x^2+y^2)^2+2014y^2+2015=x^2+4030y \end{matrix}\right.\)

  bởi Ban Mai 07/02/2017
ADMICRO/lession_isads=0

Câu trả lời (1)

  • \(\left\{\begin{matrix} 4x^2=(\sqrt{x^2+1}+1)(x^2-y^3+3y-2)\\ (x^2+y^2)^2+2014y^2+2015=x^2+4030y \end{matrix}\right.\)  (2)

    Từ PT (2), ta có \((x^2+y^2)^2-(x^2+y^2)=-2015(y-1)^2\leq 0\Leftrightarrow 0\leq x^2+y^2\leq 1\)
    Do đó \(|x| \leq 1; |y| \leq 1\)

    + Nếu \(\sqrt{x^2+1}-1=0\Leftrightarrow x=0\) thay vào HPT, ta được:

    \(\left\{\begin{matrix} -y^3+3y-2=0\\ y^4+2014y^2+2015=4030y \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -(y-1)^2(y+2)=0\\ y^4+2014y^2+2015=4030y \end{matrix}\right.\)

    \(\Leftrightarrow y=1(do\ \left | y \right |\leq 1)\)

    Như vậy (x;y) = (0;1) là một nghiệm của HPT đã cho.
    + Nếu \(\sqrt{x^2+1}-1\neq 0\Leftrightarrow x\neq 0\)  nhân hai vế của PT (1) với \(\sqrt{x^2+1}-1\), ta được
    \((1)\Leftrightarrow 4x^2(\sqrt{x^2+1}-1)=x^2(x^2-y^3+3y-2)\)
    \(\Leftrightarrow 4(\sqrt{x^2+1}-1)=x^2-y^3+3y-2\)
    \(\Leftrightarrow x^2+1-4\sqrt{x^2+1}+3=y^3-3y+2\)
    \(\Leftrightarrow 4(\sqrt{x^2+1}-1)(\sqrt{x^2+1-3})=(y+3)(y-1)^2\)
    Với \(x\neq 0;\left | x \right |\leq 1;\left | y \right |\leq 1\), ta có \(\sqrt{x^2+1}-1> 0;\sqrt{x^2+1}-3;(y+2)(y-1)^2\)

    Nên \((\sqrt{x^2+1}-1)(\sqrt{x^2+1}-3)< 0\leq (y+2)(y-1)^2\)  , từ đó PT (3) vô nghiệm
    Đối chiếu với điều kiện ta thấy (x;y)=(0;1) là nghiệm của HPT đã cho.

      bởi Nguyễn Anh Hưng 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF