OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm \(y\) sao cho giá trị của hai biểu thức \(\displaystyle{{y + 5} \over {y - 1}} - {{y + 1} \over {y - 3}}\) và \(\displaystyle{{ - 8} \over {\left( {y - 1} \right)\left( {y - 3} \right)}}\) bằng nhau.

  bởi Bo bo 08/02/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có: \(\displaystyle{{y + 5} \over {y - 1}} - {{y + 1} \over {y - 3}}=\displaystyle{{ - 8} \over {\left( {y - 1} \right)\left( {y - 3} \right)}}\)             ĐKXĐ: \(\displaystyle y \ne 1\)và \(\displaystyle y \ne 3\)

    \(\displaystyle  \Leftrightarrow {{\left( {y + 5} \right)\left( {y - 3} \right)} \over {\left( {y - 1} \right)\left( {y - 3} \right)}} - {{\left( {y + 1} \right)\left( {y - 1} \right)} \over {\left( {y - 1} \right)\left( {y - 3} \right)}} \) \(\displaystyle = {{ - 8} \over {\left( {y - 1} \right)\left( {y - 3} \right)}}  \) 

    \(\displaystyle  \Rightarrow \left( {y + 5} \right)\left( {y - 3} \right) - \left( {y + 1} \right)\left( {y - 1} \right) \) \(=  - 8  \) 

    \(\displaystyle  \Leftrightarrow {y^2} - 3y + 5y - 15 - {y^2} + 1 =  \) \(- 8  \) 

    \(\displaystyle  \Leftrightarrow 2y = 6  \)

    \(\displaystyle \Leftrightarrow y = 3\) (không thỏa mãn)

    Vậy không có giá trị nào của \(y\) thỏa mãn điều kiện bài toán.

      bởi Phung Hung 08/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF