OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Tìm GTNN của biểu thức A=4x^2 +4x+1

1.1 tìm giá trị nhỏ nhất của các biểu thức

a) A=4x^2 +4x+1

b)B=(x-1)* (x+2) *(x+3)*(x+6)

c)C=x^2-2x+y^2-4y+7

1.2 tìm giá trị lớn nhất của các biểu thức

a.A=5-8x-x^2

b.B=5-x^2+2x-4y^2-4y

1.3 a. cho a^2 +b^2 +c^2 =ab+bc +ca chứng minh rằng a=b=c

  bởi thu hằng 25/10/2018
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Bài 1:

    a, \(A=4x^2+4x+1\)

    \(A=4x^2+2x+2x+1\)

    \(A=2x.\left(2x+1\right)+\left(2x+1\right)\)

    \(A=\left(2x+1\right)^2\)

    Với mọi giá trị của \(x\in R\) ta có:

    \(\left(2x+1\right)^2\ge0\)

    Hay \(A\ge0\) với mọi giá trị của \(x\in R\).

    Để \(A=0\)thì \(\left(2x+1\right)^2=0\Rightarrow2x=-1\Rightarrow x=\dfrac{-1}{2}\)

    Vậy.....

    b, \(B=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

    \(B=\left[\left(x-1\right).\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

    \(B=\left(x^2+6x-x+6\right).\left(x^2+3x+2x+6\right)\)

    \(B=\left(x^2+5x+6\right)\left(x^2+5x+6\right)\)

    \(B=\left(x^2+5x+6\right)^2\)

    \(B=\left(x^2+2,5x+2,5x+6,25-0,25\right)^2\)

    \(B=\left[\left(x+2,5\right)^2-0,25\right]^2\)

    Với mọi giá trị của \(x\in R\) ta có:

    \(\left(x+2,5\right)^2\ge0\Rightarrow\left(x+2,5\right)^2-0,25\ge-0,25\)

    \(\Rightarrow\left[\left(x+2,5\right)^2-0,25\right]^2\ge0,0625\)

    Hay \(B\ge0,0625\) với mọi giá trị của \(x\in R\).

    Để \(B=0,0625\) thì \(\left[\left(x+2,5\right)^2-0,25\right]^2=0,0625\)

    \(\Rightarrow\left(x+2,5\right)^2-0,25=0,25\)

    \(\Rightarrow x+2,5=0\Rightarrow x=-2,5\)

    Vậy.......

    Câu c làm tương tự!! Chúc bạn học tốt!!!

      bởi nguyen thi ngoc hieu 25/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF