OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Phân tích đa thức A=(x^2+y^2)^3+(z^2-x^2)^3-(y^2+z^2)^3 thành nhân tử

Phân tích đa thức thành nhân tử :

\(A=\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)

 

  bởi bala bala 21/05/2019
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Biến đổi : \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3\) theo công thức tổng của hai lập pương , ta được :

    \(\left(y^2+z^2\right)\left[\left(x^2+y^2\right)^2-\left(x^2+y^2\right)\left(z^2-x^2\right)+\left(z^2-x^2\right)^2\right]\)

    Thay vào \(A\),ta có : \(A=\left(y^2+z^2\right).B\).Trong đó :

    \(B=\left[\left(x^2+y^2\right)^2-\left(x^2+y^2\right)\left(z^2-x^2\right)\right]+\left[\left(z^2-x^2\right)^2-\left(y^2+z^2\right)^2\right]\)

    \(=\left[\left(x^2+y^2\right)\left(2x^2+y^2-z^2\right)\right]+\left[\left(2z^2-x^2+y^2\right)\left(-x^2-y^2\right)\right]\)

    \(=\left(x^2+y^2\right)\left(3x^2-3z^2\right)\)

    Vậy \(A=3\left(y^2+z^2\right)\left(x^2+y^2\right)\left(x^2-z^2\right)\).

     

      bởi Le Cam Ly 21/05/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF