OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho phương trình ẩn \(x\): \(\displaystyle{{x + a} \over {a - x}} + {{x - a} \over {a + x}} = {{a\left( {3a + 1} \right)} \over {{a^2} - {x^2}}}\). Tìm các giá trị của \(a\) sao cho phương trình nhận \(\displaystyle x = {1 \over 2}\) làm nghiệm.

  bởi sap sua 08/02/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Thay \(\displaystyle x = {1 \over 2}\) vào phương trình, ta có:

    \(\displaystyle{\displaystyle{{1 \over 2} + a} \over {a - \displaystyle {1 \over 2}}} + {\displaystyle {{1 \over 2} - a} \over {a + \displaystyle {1 \over 2}}} = {\displaystyle {a\left( {3a + 1} \right)} \over {{a^2} - {\displaystyle {\left( {{1 \over 2}} \right)}^2}}}\)

    ĐKXĐ: \(\displaystyle a \ne  \pm {1 \over 2}\)

    \(\displaystyle \Leftrightarrow {\displaystyle {\displaystyle {1 \over 2} + a} \over {a - \displaystyle {1 \over 2}}} + {\displaystyle{\displaystyle {1 \over 2} - a} \over {a + \displaystyle {1 \over 2}}} = {\displaystyle {a\left( {3a + 1} \right)} \over {{a^2} - \displaystyle {1 \over 4}}}  \)

    \(\displaystyle  \Leftrightarrow {\displaystyle {1 + 2a} \over {2a - 1}} + {\displaystyle{1 - 2a} \over {2a + 1}} = {\displaystyle {4a\left( {3a + 1} \right)} \over {4{a^2} - 1}}\) 

    \(\displaystyle  \Leftrightarrow {\displaystyle {\left( {1 + 2a} \right)\left( {2a + 1} \right)} \over {4{a^2} - 1}} \) \(\displaystyle + {\displaystyle {\left( {1 - 2a} \right)\left( {2a - 1} \right)} \over {4{a^2} - 1}} \) \(\displaystyle = {\displaystyle{4a\left( {3a + 1} \right)} \over {4{a^2} - 1}}\) 

    \(\displaystyle  \Rightarrow \left( {1 + 2a} \right)\left( {2a + 1} \right) \)\(\displaystyle + \left( {1 - 2a} \right)\left( {2a - 1} \right) \) \(\displaystyle = 4a\left( {3a + 1} \right) \) 

    \(\displaystyle  \Leftrightarrow 2a + 1 + 4{a^2} + 2a + 2a - 1 - 4{a^2} \) \(+ 2a = 12{a^2} + 4a  \) 

    \(\displaystyle  \Leftrightarrow 12{a^2} - 4a = 0  \) 

    \(\displaystyle  \Leftrightarrow 4a\left( {3a - 1} \right) = 0  \)

    \(\displaystyle \Leftrightarrow 4a = 0\) hoặc \(\displaystyle 3a - 1 = 0\)

    \(\displaystyle \Leftrightarrow a = 0\) hoặc \(\displaystyle 3a = 1 \) 

    \(\displaystyle \Leftrightarrow a = 0\) (thỏa mãn) hoặc \(\displaystyle a = {1 \over 3}\) (thỏa mãn)

    Vậy khi \(a = 0\) hoặc \(\displaystyle a = {1 \over 3}\) thì phương trình \(\displaystyle{{x + a} \over {a - x}} + {{x - a} \over {a + x}} = {{a\left( {3a + 1} \right)} \over {{a^2} - {x^2}}}\) nhận \(\displaystyle x = {1 \over 2}\) làm nghiệm.

      bởi Nguyen Phuc 08/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF