OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Trong mặt phẳng tọa độ \(Oxy\), cho điểm \(M=(3;-5)\), đường thẳng \(d\) có phương trình \(3x+2y-6=0\) và đường tròn \((C)\) có phương trình: \(x^2+y^2-2x+4y-4=0\). Tìm ảnh của \(M\), \(d\) và \((C)\) qua phép đối xứng qua trục \(Ox\).

  bởi Thanh Nguyên 01/03/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Gọi \(M’\), \(d’\) và \((C’)\) theo thứ tự là ảnh của \(M\), \(d\) và \((C)\) qua phép đối xứng qua trục \(Ox\).

    Khi đó \(M’=(3;5)\).

    Để tìm \(d’\) ta viết biểu thức tọa độ của phép đối xứng qua trục \(Ox:\left\{ \begin{array}{l}x' = x\\y' =- y\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = x'\\y =- y'\end{array} \right.\)(1).

    Thay (1) vào phương trình của đường thẳng \(d\) ta được \(3x’-2y’-6=0\). Từ đó suy ra phương trình của \(d’\) là \(3x-2y-6=0\).

    Thay (1) vào phương trình của \((C)\) ta được \({(x’)}^2+{(y’)}^2-2x’-4y’-4=0\). Từ đó suy ra phương trình của  \((C’)\) là \({(x-1)}^2+{(y-2)}^2=9\).

    Cũng có thể nhận xét \((C)\) có tâm là \(I(1;-2)\), bán kính bằng \(3\), từ đó suy ra tâm \(I’\) của \((C’)\) có tọa độ \((1;2)\) và phương trình của \((C’)\) là \({(x-1)}^2+{(y-2)}^2=9\).

      bởi My Le 01/03/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF