OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Giải phương trình lượng giác cho sau: \(3{\sin ^2}{x \over 2}\cos \left( {{{3\pi } \over 2} + {x \over 2}} \right) + 3{\sin ^2}{x \over 2}\cos {x \over 2} \) \(= \sin {x \over 2}{\cos ^2}{x \over 2} + {\sin ^2}\left( {{x \over 2} + {\pi \over 2}} \right)\cos {x \over 2}\)

  bởi Đặng Ngọc Trâm 25/10/2022
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Ta có:

    \(\cos \left( {{{3\pi } \over 2} + {x \over 2}} \right) = \sin {x \over 2}\)

    \(\sin \left( {{\pi  \over 2} + {x \over 2}} \right) = \cos {x \over 2}\)

    Phương trình đã cho trở thành:

    \(3{\sin ^3}{x \over 2} + 3{\sin ^2}{x \over 2}\cos {x \over 2}\)\( - \sin {x \over 2}{\cos ^2}{x \over 2} - {\cos ^3}{x \over 2} = 0(*)\)

    Với điều kiện \(\cos {x \over 2} \ne 0\) , chia hai vế của (*) cho \({\cos ^3}{x \over 2}\) thì được phương trình

    \(3{\tan ^3}{x \over 2} + 3{\tan ^2}{x \over 2} - \tan {x \over 2} - 1 = 0\)

    \(\begin{array}{l}
    \Leftrightarrow \left( {3{{\tan }^3}\frac{x}{2} - \tan \frac{x}{2}} \right) + \left( {3{{\tan }^2}\frac{x}{2} - 1} \right) = 0\\
    \Leftrightarrow \tan \frac{x}{2}\left( {3{{\tan }^2}\frac{x}{2} - 1} \right) + \left( {3{{\tan }^2}\frac{x}{2} - 1} \right) = 0
    \end{array}\)

    \( \Leftrightarrow \) \(\left( {\tan {x \over 2} + 1} \right)\left( {3{{\tan }^2}{x \over 2} - 1} \right) = 0\)

    \(\begin{array}{l}
    \Leftrightarrow \left[ \begin{array}{l}
    \tan \frac{x}{2} + 1 = 0\\
    3{\tan ^2}\frac{x}{2} - 1 = 0
    \end{array} \right.\\
    \Leftrightarrow \left[ \begin{array}{l}
    \tan \frac{x}{2} = - 1\\
    \tan \frac{x}{2} = \pm \frac{1}{{\sqrt 3 }}
    \end{array} \right.\\
    \Leftrightarrow \left[ \begin{array}{l}
    \frac{x}{2} = - \frac{\pi }{4} + k\pi \\
    \frac{x}{2} = \pm \frac{\pi }{6} + k\pi
    \end{array} \right.\\
    \Leftrightarrow \left[ \begin{array}{l}
    x = - \frac{\pi }{2} + k2\pi \\
    x = \pm \frac{\pi }{3} + k2\pi
    \end{array} \right.
    \end{array}\)

    Vậy phương trình có nghiệm \(x =  - {\pi  \over 2} + 2k\pi \) và \(x =  \pm {\pi  \over 3} + 2k\pi \).

      bởi Nguyễn Tiểu Ly 26/10/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF