OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh đường thẳng MN luôn đi qua 1 điểm cố định biết AB=m và AC=m+1

Cho tam giác ABC. Xét điểm M trên tian AB, điểm N trên tia AC sao cho AB = m và AC = (m+1). AN với m>0 nào đó. Chứng minh rằng các đường thẳng MN luôn đi qua một điểm cố định

  bởi Van Tho 01/11/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Đặt \(\overrightarrow{AB}=\overrightarrow{b}\)\(\overrightarrow{AC}=\overrightarrow{c}\). Khi đó, do giả thiết ta có \(\overrightarrow{AM}=\frac{1}{m}.\overrightarrow{b}\) và \(\overrightarrow{AN}=\frac{1}{m+1}.\overrightarrow{c}\)

    Suy ra \(\left(m+1\right)\overrightarrow{AN}-m\overrightarrow{AM}=\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{BC}=\overrightarrow{AD}\)

    Với D là đỉnh thứ 4 của hình bình hàng ABCD, từ đó suy ra MN luôn đi qua điểm D cố định

      bởi Phương Minh 01/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF