OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho dãy số\(\left( {{u_n}} \right) :\) \({\rm{ }}\left\{ \begin{array}{l}{u_1} = 1,{u_2} = 2\\{u_{n + 1}} = 2{u_n} - {u_{n - 1}} + 1{\rm{ voi n}} \ge {\rm{2}}{\rm{.}}\end{array} \right.\). Lập dãy số \(\left( {{v_n}} \right)\) với \({v_n} = {u_{n + 1}} - {u_n}.\) Chứng minh dãy số \(\left( {{v_n}} \right)\) là cấp số cộng.

  bởi Hong Van 01/03/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Từ công thức xác định dãy số ta có

    \({u_{n + 1}} = 2{u_n} - {u_{n - 1}} + 1\) hay \({u_{n + 1}} - {u_n} = {u_n} - {u_{n - 1}} + 1.{\rm{  }}\left( 1 \right)\)

    Vì \({v_n} = {u_{n + 1}} - {u_n}\) nên từ (1), ta có

    \({v_n} = {v_{n - 1}} + 1\) với \(n \ge 2.\left( 2 \right)\)

    Vậy \(\left( {{v_n}} \right)\) là cấp số cộng với \({v_1} = {u_2} - {u_1} = 1,\) công sai \(d = 1.\)

    hay \({v_n} = {v_1} + \left( {n - 1} \right)d \) \(= 1 + \left( {n - 1} \right).1 = n\)

      bởi Tuấn Tú 01/03/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF