OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{{x}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z+3 \right)}^{2}}=24\) cắt mp \(\left( \alpha  \right):x+y=0\) theo giao tuyến là đường tròn \(\left( C \right)\). Tìm hoành độ của điểm \(M\) thuộc đường tròn \(\left( C \right)\) sao cho k/c từ \(M\) đến \(A\left( 6;-10;3 \right)\) lớn nhất?

    • A. 
      -1
    • B. 
      -4
    • C. 
      2
    • D. 
      4

    Lời giải tham khảo:

    Đáp án đúng: B

    Ta có: Mặt cầu \(\left( S \right)\) có tâm \(I\left( 0;2;-3 \right)\).

    Gọi \({A}'\) là hình chiếu của \(A\) trên mặt phẳng \(\left( \alpha  \right)\)

    Ptđt \(\left( AA' \right):\)\(\left\{ \begin{align} & x=6+t \\ & y=-10+t \\ & z=3 \\ \end{align} \right.\)

    Ta có \(A'=AA'\cap \left( \alpha  \right)\)

    \(\Rightarrow 6+t-10+t=0\Rightarrow t=2\Rightarrow A'\left( 8;-8;3 \right)\)

    Gọi \({I}'\) là hình chiếu của \(I\) trên mặt phẳng \(\left( \alpha  \right)\) suy ra \({I}'\) là tâm của đường tròn \(\left( C \right)\)

    Làm tương tự như cách tìm tọa độ \({A}'\), ta có \({I}'\left( -1;1-3 \right)\)

    Ta có \(A{{M}^{2}}=A{{{A}'}^{2}}+{A}'{{M}^{2}}\) vì \(A{A}'\) không đổi nên \(AM\) lớn nhất khi \({A}'M\) lớn nhất, từ đó suy ra \({A}',M,{I}'\) thẳng hàng và \({I}'\) nằm giữa \({A}'\) và \(M\).

    Ta có

    \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\begin{align} & {I}'I=\sqrt{2};\,{A}'{I}'=3\sqrt{22} \\ & {{R}_{(C)}}=\sqrt{22} \\ \end{align}\)

    \(\Rightarrow {A}'M=4\sqrt{22}\)

    \(\begin{array}{l} \overrightarrow {A'M} = \frac{4}{3}\overrightarrow {A'I'} \\ \Leftrightarrow \left\{ \begin{array}{l} {x_M} - {x_{A'}} = \frac{4}{3}\left( {{x_I} - {x_{A'}}} \right)\\ {y_M} - {y_{A'}} = \frac{4}{3}\left( {{y_I} - {y_{A'}}} \right)\\ {z_M} - {z_{A'}} = \frac{4}{3}\left( {{z_I} - {z_{A'}}} \right) \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} {x_M} = - 4\\ {y_M} = 4\\ {z_M} = - 5 \end{array} \right.\\ \end{array}\)

    Chọn B

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADMICRO/

 

CÂU HỎI KHÁC

NONE
OFF