-
Câu hỏi:
Trong các mệnh đề sau, mệnh đề nào đúng?
-
A.
Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.
-
B.
Một đường thẳng là đường vuông góc chung của hai đường thẳng chéo nhau nếu nó vuông góc với cả hai đường thẳng đó.
-
C.
Đường vuông góc chung của hai đường thẳng chéo nhau thì nằm trong mặt phẳng chứa đường thẳng này và vuông góc với đường thẳng kia.
-
D.
Một đường thẳng là đường vuông góc chung của hai đường thẳng chéo nhau nếu nó cắt cả hai đường thẳng đó.
Lời giải tham khảo:
Đáp án đúng: A
Đáp án A: đúng
Đáp án B: Sai, do phát biểu này thiếu yếu tố cắt nhau.
Đáp án C: Sai, vì mặt phẳng đó chưa chắc đã tồn tại.
Đáp án D: Sai, do phát biểu này thiếu yếu tố vuông góc.
ĐÁP ÁN A
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Trong các mệnh đề sau, mệnh đề nào sai? Nếu hai đường thẳng a và b chéo nhau và vuông góc với nhau thì
- Cho tứ diện đều \(ABCD\) có cạnh bằng \(a\). Khoảng cách giữa hai cạnh đối \(AB\) và \(CD\)
- Trong các mệnh đề sau, mệnh đề nào đúng? Đường vuông góc chung của hai đường thẳng chéo nhau
- Cho tứ diện đều \(ABCD\) có cạnh bằng \(a\). Khoảng cách từ \(A\)đến \(\left( BCD \right)\)
- Cho hình lăng trụ tam giác \(ABC.{A}'{B}'{C}'\) có các cạnh bên hợp với đáy những góc
- Cho các khẳng định sau: (1) Khoảng cách của hai đường thẳng chéo nhau là đoạn ngắn nhất
- Cho hình lập phương \(ABCD.{A}'{B}'{C}'{D}'\)có cạnh bằng \(1\) (đvdt).
- Cho hình lập phương \(ABCD.{A}'{B}'{C}'{D}'\) có cạnh bằng \(a\). Khoảng cách giữa \(BB'\) và \(AC\)
- Cho hình chóp \(S.ABCD\) có \(SA\bot \left( ABCD \right)\), đáy \(ABCD\) là hình chữ nhật
- Cho hình chóp \(S.ABCD\) có \(SA\bot \left( ABCD \right)\), đáy \(ABCD\) là hình thang vuông