-
Câu hỏi:
Tìm phương trình đường tròn \(\left( {{C_1}} \right)\) là ảnh của \((C):{(x + 2)^2} + {(y - 1)^2} = 4\) qua phép tịnh tiến theo vectơ \(\overrightarrow v = \left( {2;1} \right).\)
-
A.
\({x^2} + {(y - 1)^2} = 4\)
-
B.
\({x^2} + {(y + 1)^2} = 4\)
-
C.
\({x^2} + {(y - 2)^2} = 4\)
-
D.
\({x^2} + {(y + 2)^2} = 4\)
Lời giải tham khảo:
Đáp án đúng: C
Đường tròn (C) có tâm I(-2;1), bán kính R=2.
Suy ra đường tròn \(\left( {{C_1}} \right)\) có bán kính R’=R=2, tâm I’(x’;y’) là ảnh của I(-2;1) qua phép tịnh tiến theo vectơ \(\overrightarrow v = \left( {2;1} \right).\)
Áp dụng biểu thức tọa độ ta có: \(\left\{ \begin{array}{l}x' = - 2 + 2 = 0\\y' = 1 + 1 = 2\end{array} \right. \Rightarrow I'(0;2)\)
Vậy phương trình \(\left( {{C_1}} \right)\) là: \({x^2} + {(y - 2)^2} = 4\)
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Cho đường thẳng d có vectơ chỉ phương không cùng phương với vectơ \(\overrightarrow u .
- Trong mặt phẳng Oxy, cho \(\overrightarrow v = (2; - 1)\) và điểm M(-3;2).
- Trong mặt phẳng Oxy, cho đường thẳng d có phương trình \(3x + y + 1 = 0.
- Tìm phương trình đường tròn \(\left( {{C_1}} \right)\) là ảnh của \((C):{(x + 2)^2} + {(y - 1)^2} = 4\) qua phép tịnh tiến theo vec
- Hãy tìm vectơ \(\overrightarrow v = \left( {a;b} \right)\) sao cho khi tịnh tiến đồ thị \(y = f(x) = {x^3} + 3x + 1\) theo \(\overri
- Tìm mệnh đề đúng trong các mệnh đề sau:
- Trong mặt phẳng tọa độ, phép tịnh tiến theo v→(1;2) biến điểm M (-1; 4) thành điểm M’ có tọa độ là:
- Trong mặt phẳng tọa độ cho điểm M(-10;1) và điểm M’(3;8).
- Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto v→(1;1) biến điểm A(0;2) thành A’ và biến điểm B(-2;1) thành B�
- Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto \(\overrightarrow v = \left( {1;0} \right)\) biến đường thẳng