-
Câu hỏi:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Đường thẳng SA vuông góc với mặt phẳng đáy, SA = a. Gọi M là trung điểm của CD. Khoảng cách từ M đến (SAB) nhận giá trị nào trong các giá trị sau?
-
A.
\(\frac{{a\sqrt 2 }}{2}\)
-
B.
2a
-
C.
\(a\sqrt 2 \)
-
D.
a
Lời giải tham khảo:
Đáp án đúng: D
Gọi N là trung điểm của AB, ta có:
\(\begin{array}{l}
\left\{ \begin{array}{l}
MN \bot AB\\
MN \bot SA\left( {SA \bot \left( {ABCD} \right)} \right)
\end{array} \right. \Rightarrow MN \bot \left( {SAB} \right)\\
\Rightarrow d\left( {M,\left( {SAB} \right)} \right) = MN = a
\end{array}\)Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Cho tứ diện đều ABCD có cạnh bằng a. Khoảng cách từ A đến (BCD) là:
- Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và SA = SB = SC = a.
- Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA ⊥ (ABC) và SA = \(\frac{a}{2}\).
- Tính góc giữa hai mặt phẳng (SAB) và (SAC) biết hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA ⊥ (ABC) và SA = (frac{a}{2})
- Cho hình tứ giác đều S.ABCD có cạnh bên và cạnh đáy đều bẳng a. gọi O là tâm của đáy ABCD.
- Tính góc giữa hai mặt phẳng (SBD) và (SAC) biết hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh a, góc nhọn bằng 60^0 và cạnh SC vuông góc với mặt phẳng (ABCD)
- Cho hình chóp S.ABCD có SA \( \bot \)( ABCD), đáy ABCD là hình chữ nhật với AC = \(a\sqrt 5 \) và BC=\(a\sqrt 2 \).
- Cho hình lăng trụ đứng ABC.
- Tính độ dài OK biết hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh a, góc nhọn bằng 600 và cạnh SC vuông góc với mặt phẳng (ABCD) và OK ⊥ SA
- Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Đường thẳng SA vuông góc với mặt phẳng đáy, SA = a.