-
Câu hỏi:
Cho dãy số (\(u_{n}\)) với \(\left\{\begin{matrix}u_{1}=1\\ u_{n+1}=u_{n}+(-1)^{2n+1}\end{matrix}\right.\) Số hạng tổng quát \(u_{n}\) của dãy số là số hạng nào?
-
A.
\(u_{n}=2-n\)
-
B.
\(u_{n}\) không xác định
-
C.
\(u_{n}=1-n\)
-
D.
\(u_{n}=-n\) với mọi n
Lời giải tham khảo:
Đáp án đúng: A
Ta có:
\(\begin{align} & {{u}_{2}}={{u}_{1}}+{{(-1)}^{3}}=1-1=0=2-2 \\ & {{u}_{3}}={{u}_{2}}+{{(-1)}^{5}}=0-1=-1=2-3 \\ & {{u}_{4}}={{u}_{3}}+{{(-1)}^{7}}=-1-1=-2=2-4 \\ \end{align}\)
Từ đó, ta dự đoán: \({{u}_{n}}=2-n\)
Ta chứng minh bằng phương pháp quy nạp:
Với n = 1 ta có: \({{u}_{1}}=1=2-1\) nên đúng với n = 1.
Gỉa sử với mọi n = k ta có: \({{u}_{k}}=2-k\)Ta chứng minh đúng với n = k +1, tức là chứng minh:
\({{u}_{k+1}}=2-(k+1)=1-k\)
Thật vậy theo giả thuyết ta có:
\({{u}_{k+1}}={{u}_{k}}+{{(-1)}^{2k+1}}=2-k-1=1-k\)
Từ đó ta có điều phải chứng minh.
Chọn A.
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Tìm CTTQ \(u_n\) theo n của dãy số sau \(\left\{\begin{matrix}u_{1}=2\\ u_{n+1}=2u_{n}\end{matrix}\right.\)?
- Cho dãy số (\(u_n\)) có số hạng tổng quát \(u_{n}=\frac{2n+1}{n+2}\). Số \(\frac{167}{84}\) là số hạng thứ mấy?
- Tìm CT tính số hạng tổng quát \(u_{n}\) theo n của dãy số sau \(\left\{\begin{matrix}u_{1}=3\\ u_{n+1}=u_{n}+2\end{matrix}\right.\)?
- Xét tính tăng giảm của dãy số \((u_{n})\) biết rằng: \(u_{n}=\frac{n-1}{n+1}\)?
- Xét tính tăng, giảm và bị chặn của dãy số (\(u_{n}\)), biết rằng: \(u_{n}=\frac{2n-13}{3n-2}\)?
- Cho dãy số (\(u_{n}\)) với \(\left\{\begin{matrix}u_{1}=1\\ u_{n+1}=u_{n}+(-1)^{2n+1}\end{matrix}\right.\) Số hạng tổng quát \(u_{n}\) của dãy số là số hạng nào?
- Cho dãy số \(u_{n}=\frac{7n+5}{5n+7}\). Tìm mệnh đề đúng?
- Xét tính tăng giảm của các dãy số sau: \(u_{n}=\frac{3n^{2}-2n+1}{n+1}\)?
- Xét tính tăng giảm của các dãy số sau đây: \(u_{n}=n-\sqrt{n^{2}-1}\)?
- Cho dãy số (\(u_{n}\)) xác định bởi \(\left\{\begin{matrix}u_{1}=11\\ u_{n+1}=10u_{n}+1-9n\end{matrix}\right.\). Tìm số hạng tổng quát \(u_n\) theo n?