-
Câu hỏi:
Cho dãy số \(({u_n})\) có 4 số hạng đầu là :\({u_1} = 1,{u_2} = 3,\) \({u_3} = 6,{u_4} = 10\). Hãy tìm một quy luật của dãy số trên.
-
A.
\({u_n} = \frac{{3n(n + 1)}}{2}\)
-
B.
\({u_n} = \frac{{n(n + 2)}}{2}\)
-
C.
\({u_n} = \frac{{n(n + 1)}}{3}\)
-
D.
\({u_n} = \frac{{n(n + 1)}}{2}\)
Lời giải tham khảo:
Đáp án đúng: D
Vì dãy số cho giá trị của 4 số hạng đầu ứng với 4 giá trị tương ứng của \(n = 1,2,3,4\) nên ta chỉ cần xác định một hàm số theo \(n\) mà ta phải tìm 4 ẩn là được. Chẳng hạn ta xét \({u_n} = a{n^3} + b{n^2} + cn + d\)
Theo bài ra ta có hệ phương trình :
\(\left\{ \begin{array}{l}a + b + c + d = 1\\8a + 4b + 2c + d = 3\\27a + 9b + 3c + d = 6\\64a + 16b + 4c + d = 10\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a + b + c + d = 1\\7a + 3b + c = 2\\26a + 8b + 2c = 5\\21a + 5b + c = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 0,b = c = \frac{1}{2}\\d = 0\end{array} \right.\)
Nên \({u_n} = \frac{{n(n + 1)}}{2}\) là một dãy thỏa đề bài.
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Tìm số hạng thứ 100 và 200 của dãy số \({u_n} = \frac{{2n + 1}}{{n + 2}}.\)
- Dãy số \({u_n} = \frac{{2n + 1}}{{n + 2}}\) có bao nhiêu số hạng là số nguyên.
- Dãy số \({u_n} = 2n + \sqrt {{n^2} + 4} \)có bao nhiêu số hạng làng số nguyên.
- Cho dãy số \(({u_n})\) được xác định bởi \({u_n} = {5.2^{n - 1}} - 3\) với \(\forall n \ge 2\).
- Cho dãy số \(({u_n})\) có 4 số hạng đầu là :\({u_1} = 1,{u_2} = 3,\) \({u_3} = 6,{u_4} = 10\).
- Cho dãy số \(\left( {{u_n}} \right):\left\{ \begin{array}{l}{u_1} = 2\\{u_{n + 1}} = n{u_n}\end{array} \right.,\forall n \ge 1\).
- Cho dãy số \({u_n} = \frac{{\sin \left( {\frac{{n\pi }}{3}} \right)}}{{n + 1}},\forall n \ge 1\).
- Cho dãy số (un), biết \({u_n} = \frac{1}{{n + 1}},\forall n \ge 1\). Ba số hạng đầu tiên của dãy số đó là:
- Cho dãy số (un), biết \(\left\{ \begin{array}{l}{u_1} = - 1\\{u_{n + 1}} = {u_n} + 3\end{array} \right.\) với \(n \ge 0\).
- Số hạng tổng quát của dãy số (un) viết dưới dạng khải triển \(\frac{1}{2};\frac{1}{4};\frac{1}{8};\frac{1}{{16}};...