Giải bài 39 tr 34 sách BT Toán lớp 8 Tập 1
Thực hiện phép chia phân thức :
a. \({{{x^2} - 5x + 6} \over {{x^2} + 7x + 12}}:{{{x^2} - 4x + 4} \over {{x^2} + 3x}}\)
b. \({{{x^2} + 2x - 3} \over {{x^2} + 3x - 10}}:{{{x^2} + 7x + 12} \over {{x^2} - 9x + 14}}\)
Hướng dẫn giải chi tiết
Hướng dẫn giải
- Áp dụng quy tắc chia hai phân thức :
\( \dfrac{A}{B} : \dfrac{C}{D} = \dfrac{A}{B}. \dfrac{D}{C}\) với \( \dfrac{C}{D} ≠ 0\).
- Muốn rút gọn một phân thức ta có thể :
+ Phân tích tử thức và mẫu thức thành nhân tử (nếu cần) để tìm nhân tử chung;
+ Chia cả tử và mẫu cho nhân tử chung.
Lời giải chi tiết
a. \({{{x^2} - 5x + 6} \over {{x^2} + 7x + 12}}:{{{x^2} - 4x + 4} \over {{x^2} + 3x}}\)\( = {{{x^2} - 5x + 6} \over {{x^2} + 7x + 12}}.{{{x^2} + 3x} \over {{x^2} - 4x + 4}}\)
\( = {{\left( {{x^2} - 5x + 6} \right).x\left( {x + 3} \right)} \over {\left( {{x^2} + 7x + 12} \right){{\left( {x - 2} \right)}^2}}} = {{\left( {{x^2} - 2x - 3x + 6} \right).x\left( {x + 3} \right)} \over {\left( {{x^2} + 3x + 4x + 12} \right){{\left( {x - 2} \right)}^2}}}\)
\( = {{\left[ {x\left( {x - 2} \right) - 3\left( {x - 2} \right)} \right].x\left( {x + 3} \right)} \over {\left[ {x\left( {x + 3} \right) + 4\left( {x + 3} \right)} \right]{{\left( {x - 2} \right)}^2}}}\)
\( = {{x\left( {x - 2} \right)\left( {x - 3} \right)\left( {x + 3} \right)} \over {\left( {x + 3} \right)\left( {x + 4} \right){{\left( {x - 2} \right)}^2}}} = {{x\left( {x - 3} \right)} \over {\left( {x + 4} \right)\left( {x - 2} \right)}}\)
b. \({{{x^2} + 2x - 3} \over {{x^2} + 3x - 10}}:{{{x^2} + 7x + 12} \over {{x^2} - 9x + 14}}\)\( = {{{x^2} + 2x - 3} \over {{x^2} + 3x - 10}}.{{{x^2} - 9x + 14} \over {{x^2} + 7x + 12}}\)
\(\eqalign{ & = {{\left( {{x^2} + 2x - 3} \right)\left( {{x^2} - 9x + 14} \right)} \over {\left( {{x^2} + 3x - 10} \right)\left( {{x^2} + 7x + 12} \right)}} = {{\left( {{x^2} + 3x - x - 3} \right)\left( {{x^2} - 7x - 2x + 14} \right)} \over {\left( {{x^2} + 5x - 2x + 10} \right)\left( {{x^2} + 3x + 4x + 12} \right)}} \cr & = {{\left[ {x\left( {x + 3} \right) - \left( {x + 3} \right)} \right]\left[ {x\left( {x - 7} \right) - 2\left( {x - 7} \right)} \right]} \over {\left[ {x\left( {x + 5} \right) - 2\left( {x + 5} \right)} \right]\left[ {x\left( {x + 3} \right) + 4\left( {x + 3} \right)} \right]}} \cr & = {{\left( {x + 3} \right)\left( {x - 1} \right)\left( {x - 7} \right)\left( {x - 2} \right)} \over {\left( {x + 5} \right)\left( {x - 2} \right)\left( {x + 3} \right)\left( {x + 4} \right)}} = {{\left( {x - 1} \right)\left( {x - 7} \right)} \over {\left( {x + 5} \right)\left( {x + 4} \right)}} \cr} \)
-- Mod Toán 8 HỌC247
Bài tập SGK khác
-
Theo dõi (0) 1 Trả lời
-
Theo dõi (0) 1 Trả lời
-
Theo dõi (0) 1 Trả lời
-
Làm tính chia phân thức: \(\left( { - \dfrac{{20x}}{{3{y^2}}}} \right):\left( { - \dfrac{{4{x^3}}}{{5y}}} \right)\)
bởi Lê Thánh Tông 03/02/2021
Theo dõi (0) 1 Trả lời -
ADMICRO
Thực hiện phép tính sau: \(\dfrac{{4{x^2}}}{{5{y^2}}}:\dfrac{{6x}}{{5y}}:\dfrac{{2x}}{{3y}}\)
bởi Phung Thuy 03/02/2021
Theo dõi (0) 1 Trả lời -
Làm tính chia phân thức: \(\dfrac{{1 - 4{x^2}}}{{{x^2} + 4x}}:\dfrac{{2 - 4x}}{{3x}}\)
bởi Ngoc Tiên 03/02/2021
Theo dõi (0) 1 Trả lời -
Theo dõi (0) 1 Trả lời
-
Tìm phân thức nghịch đảo của phân thức sau: \(\eqalign{ & \,\,{1 \over {x - 2}} \cr} \)
bởi Tieu Dong 02/02/2021
Theo dõi (0) 1 Trả lời