OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 3.9 trang 34 SBT Toán 8 Tập 1 Kết nối tri thức - KNTT

Bài tập 3.9 trang 34 SBT Toán 8 Tập 1 Kết nối tri thức

Cho tam giác ABC vuông cân tại đỉnh A. Ghép thêm vào phía ngoài tam giác đó tam giác BCD vuông cân tại đỉnh B. Chứng minh tứ giác ABDC là một hình thang vuông (hình thang có một cạnh bên vuông góc với hai đáy)?

ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết Bài tập 3.9

Do ∆ABC vuông cân tại đỉnh A nên ABC^=ACB^; A^=90°

Xét trong ∆ABC ta có: ABC^+ACB^+A^=180°

Nên ABC^=ACB^=180°A^2=180°90°2=45°.

Do ∆BCD vuông cân tại đỉnh B nên BCD^=BDC^; CBD^=90°

Xét trong ∆BCD ta có: BCD^+BDC^+CBD^=180°

Nên BCD^=BDC^=180°CBD^2=180°90°2=45°.

Ta có ABC^=45°=BCD^ nên AB // CD (hai góc so le trong bằng nhau).

Vậy ABCD là một hình thang với AB, CD là hai đáy; cạnh bên của hình thang đó là AC vuông góc với đáy AB nên hình thang đó là hình thang vuông.

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 3.9 trang 34 SBT Toán 8 Tập 1 Kết nối tri thức - KNTT HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF