Thực hành 8 trang 98 SGK Toán 11 Chân trời sáng tạo tập 1
Cho tứ diện \(SABC\). Gọi \(H,K\) lần lượt là hai điểm trên hai cạnh \(SA\) và \(SC\left( {H \ne S,A;K \ne S,C} \right)\) sao cho \(HK\) không song song với \(AC\). Gọi \(I\) là trung điểm của \(BC\) (Hình 38).
a) Tìm giao điểm của đường thẳng \(HK\) và mặt phẳng \(\left( {ABC} \right)\).
b) Tìm giao tuyến của các mặt phẳng \(\left( {SAI} \right)\) và \(\left( {ABK} \right)\); \(\left( {SAI} \right)\) và \(\left( {BCH} \right)\).
Hướng dẫn giải chi tiết Thực hành 8
Phương pháp giải:
‒ Để tìm giao điểm của đường thẳng và mặt phẳng, ta tìm giao điểm của đường thẳng đó với một đường thẳng trong mặt phẳng.
‒ Để tìm giao tuyến của hai mặt phẳng, ta tìm hai điểm chung phân biệt của hai mặt phẳng đó.
Lời giải chi tiết:
a) Gọi \(D = HK \cap AC\). Ta có:
\(\left. \begin{array}{l}D \in AC \subset \left( {ABC} \right)\\D \in HK\end{array} \right\} \Rightarrow M = HK \cap \left( {ABC} \right)\)
b) Gọi \(E = SI \cap BK\). Ta có:
\(\left. \begin{array}{l}E \in SI \subset \left( {SAI} \right)\\E \in BK \subset \left( {ABK} \right)\end{array} \right\} \Rightarrow E \in \left( {SAI} \right) \cap \left( {ABK} \right)\)
Mà \(A \in \left( {SAI} \right) \cap \left( {ABK} \right)\).
Vậy giao tuyến của hai mặt phẳng \(\left( {SAI} \right)\) và \(\left( {ABK} \right)\) là đường thẳng \(AE\).
Ta có:
\(\begin{array}{l}\left. \begin{array}{l}I \in \left( {SAI} \right)\\I \in BC \subset \left( {BCH} \right)\end{array} \right\} \Rightarrow I \in \left( {SAI} \right) \cap \left( {BCH} \right)\\\left. \begin{array}{l}H \in SA \subset \left( {SAI} \right)\\H \in \left( {BCH} \right)\end{array} \right\} \Rightarrow H \in \left( {SAI} \right) \cap \left( {BCH} \right)\end{array}\)
Vậy giao tuyến của hai mặt phẳng \(\left( {SAI} \right)\) và \(\left( {BCH} \right)\) là đường thẳng \(HI\).
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Hoạt động khám phá 10 trang 96 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Hoạt động khám phá 11 trang 96 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Vận dụng 4 trang 98 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Vận dụng 5 trang 98 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 1 trang 99 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 2 trang 99 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 3 trang 99 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 4 trang 99 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 5 trang 99 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Bài tập 1 trang 112 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 2 trang 112 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 3 trang 112 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 4 trang 112 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.