OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Thực hành 3 trang 97 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Thực hành 3 trang 97 SGK Toán 11 Chân trời sáng tạo tập 2

Cho hai biến cố \(A\) và \(B\) độc lập với nhau. Biết \(P\left( A \right) = 0,9\) và \(P\left( B \right) = 0,6\). Hãy tính xác suất của biến cố \(A \cup B\).

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Thực hành 3

Phương pháp giải:

‒ Sử dụng quy tắc nhân xác suất: Nếu hai biến cố \(A\) và \(B\) độc lập thì \(P\left( {AB} \right) = P\left( A \right)P\left( B \right)\).

‒ Sử dụng quy tắc cộng cho hai biến cố bất kì: Cho hai biến cố \(A\) và \(B\). Khi đó: \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\).

 

Lời giải chi tiết:

Vì hai biến cố \(A\) và \(B\) độc lập với nhau nên \(P\left( {AB} \right) = P\left( A \right).P\left( B \right) = 0,9.0,6 = 0,54\).

Vậy \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = 0,9 + 0,6 - 0,54 = 0,96\).

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Thực hành 3 trang 97 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF