Thực hành 2 trang 103 SGK Toán 11 Chân trời sáng tạo tập 1
Cho hình chóp \(S.ABCD\). Vẽ hình thang \(A{\rm{D}}M{\rm{S}}\) có hai đáy là \(A{\rm{D}}\) và \(M{\rm{S}}\). Gọi \(d\) là đường thẳng trong không gian đi qua \({\rm{S}}\) và song song với \(A{\rm{D}}\). Chứng minh đường thẳng \(d\) nằm trong mặt phẳng \(\left( {SAD} \right)\).
Hướng dẫn giải chi tiết Thực hành 2
Phương pháp giải:
Sử dụng:
‒ Định lí 1: Trong không gian, qua một điểm nằm ngoài một đường thẳng, có một và chỉ một đường thẳng song song với đường thẳng đó.
‒ Tính chất: Có duy nhất một mặt phẳng chứa hai đường thẳng song song.
Lời giải chi tiết:
\(A{\rm{D}}M{\rm{S}}\) là hình thang có hai đáy là \(A{\rm{D}}\) và \(M{\rm{S}}\) nên \(A{\rm{D}}\parallel M{\rm{S}}\).
Theo đề bài ta lại có \(d\parallel A{\rm{D}}\).
Do đó \(d \equiv MS\) (theo định lí 1).
Lại có: \(SM \subset \left( {A{\rm{D}}M{\rm{S}}} \right) \Rightarrow d \subset \left( {A{\rm{D}}M{\rm{S}}} \right) \Rightarrow d \subset \left( {SA{\rm{D}}} \right)\).
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Vận dụng 1 trang 102 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Hoạt động khám phá 2 trang 102 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Hoạt động khám phá 3 trang 104 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Thực hành 3 trang 105 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Vận dụng 2 trang 105 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 1 trang 105 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 2 trang 106 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 3 trang 106 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 4 trang 106 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 5 trang 106 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 6 trang 106 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Bài tập 1 trang 117 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 2 trang 117 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 3 trang 117 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 4 trang 117 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.