Hoạt động khám phá 2 trang 72 SGK Toán 11 Chân trời sáng tạo tập 1
Cho hai hàm số và \(y = g\left( x \right) = \frac{x}{{x + 1}}\).
a) Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì thoả mãn \({x_n} \ne - 1\) với mọi \(n\) và \({x_n} \to 1\) khi \(n \to + \infty \). Tìm giới hạn \(\lim \left[ {f\left( {{x_n}} \right) + g\left( {{x_n}} \right)} \right]\).
b) Từ đó, tìm giới hạn \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right]\), và so sánh với \(\mathop {\lim }\limits_{x \to 1} {\rm{ }}f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right)\).
Hướng dẫn giải chi tiết Hoạt động khám phá 2
Phương pháp giải:
a) Áp dụng các công thức tính giới hạn hữu hạn của dãy số.
b) Tính \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right],\)\(\mathop {\lim }\limits_{x \to 1} {\rm{ }}f\left( x \right),\)\(\mathop {\lim }\limits_{x \to 1} g\left( x \right)\) bằng cách đưa về tính giới hạn của dãy số \(\left( {{x_n}} \right)\) thỏa mãn \({x_n} \to {x_0}\) khi \(n \to + \infty \) sau đó so sánh.
Lời giải chi tiết:
a) \(\lim \left[ {f\left( {{x_n}} \right) + g\left( {{x_n}} \right)} \right]\)\( = \lim \left( {2{x_n} + \frac{{{x_n}}}{{{x_n} + 1}}} \right) \)\(= 2\lim {x_n} + \lim \frac{{{x_n}}}{{{x_n} + 1}} \)\(= 2.1 + \frac{1}{{1 + 1}}\)\( = \frac{5}{2}\)
b) Vì \(\lim \left[ {f\left( {{x_n}} \right) + g\left( {{x_n}} \right)} \right]\)\(= \frac{5}{2}\) nên \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right] \)\(= \frac{5}{2}\) (1).
Ta có: \(\lim {\rm{ }}f\left( {{x_n}} \right) \)\(= \lim 2{x_n} = 2\lim {x_n} = 2.1 = 2 \)\(\Rightarrow \mathop {\lim }\limits_{x \to 1} {\rm{ }}f\left( x \right) = 2\)
\(\lim g\left( {{x_n}} \right) \)\(= \lim \frac{{{x_n}}}{{{x_n} + 1}} \)\(= \lim \frac{{{x_n}}}{{{x_n} + 1}} = \frac{1}{{1 + 1}} = \frac{1}{2} \)\(\Rightarrow \mathop {\lim }\limits_{x \to 1} {\rm{ }}g\left( x \right)\)\( = \frac{1}{2}\)
Vậy \(\mathop {\lim }\limits_{x \to 1} {\rm{ }}f\left( x \right) \)\(+ \mathop {\lim }\limits_{x \to 1} g\left( x \right) \)\(= 2 + \frac{1}{2} \)\(= \frac{5}{2}\) (2).
Từ (1) và (2) suy ra \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right] \)\(= \mathop {\lim }\limits_{x \to 1} {\rm{ }}f\left( x \right) \)\(+ \mathop {\lim }\limits_{x \to 1} g\left( x \right)\)
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Hoạt động khám phá 1 trang 71 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Thực hành 1 trang 72 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Thực hành 2 trang 73 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Hoạt động khám phá 3 trang 73 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Thực hành 3 trang 75 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Hoạt động khám phá 4 trang 75 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Thực hành 4 trang 76 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Vận dụng 1 trang 76 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Hoạt động khám phá 5 trang 77 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Thực hành 5 trang 78 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Vận dụng 2 trang 78 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 1 trang 79 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 2 trang 79 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 3 trang 79 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 4 trang 79 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 5 trang 79 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 6 trang 79 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Bài tập 1 trang 84 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 2 trang 84 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 3 trang 84 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 4 trang 84 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 5 trang 84 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 6 trang 84 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 7 trang 84 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 8 trang 85 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 9 trang 85 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 10 trang 85 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 11 trang 85 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 12 trang 85 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.