Giải Bài 6.3 trang 9 SGK Toán 11 Kết nối tri thức tập 2
Rút gọn các biểu thức sau:
a) \(A=\frac{X^{5}Y^{-2}}{X^{3}Y} (X,Y\neq 0)\)
b) \(B=\frac{X^{2}Y^{-3}}{(X^{-1}Y^{4})^{-3}} (X,Y\neq 0)\)
Hướng dẫn giải chi tiết Bài 6.3
Phương pháp giải
HS sử dụng các tính chất về số mũ:
\(\begin{array}{l} {a^m}.{a^n} = {a^{m + n}};{\quad\quad\quad}\frac{{{a^m}}}{{{a^n}}} = {a^{m - n}};\\ {\left( {{a^m}} \right)^n} = {a^{mn}};{\quad\quad\quad}{\left( {ab} \right)^m} = {a^m}{b^m};\\ {\left( {\frac{a}{b}} \right)^m} = \frac{{{a^m}}}{{{b^m}}}. \end{array}\)
Lời giải chi tiết
a) \(A=\frac{X^{5}Y^{-2}}{X^{3}Y} = \frac{X^5}{X^3}\cdot\frac{1}{Y^{2-1}} = X^{5-3}Y^{-1}=X^2Y^{-1}\)
b) \(B=\frac{X^{2}Y^{-3}}{(X^{-1}Y^{4})^{-3}}=\frac{X^{2}Y^{-3}}{X^{3}Y^{-12}} = X^{2-3}Y^{-3-(-12)} = {\frac{1}{XY^9}}\)
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Giải Bài 6.1 trang 9 SGK Toán 11 Kết nối tri thức tập 2 - KNTT
Giải Bài 6.2 trang 9 SGK Toán 11 Kết nối tri thức tập 2 - KNTT
Giải Bài 6.4 trang 9 SGK Toán 11 Kết nối tri thức tập 2 - KNTT
Giải Bài 6.5 trang 9 SGK Toán 11 Kết nối tri thức tập 2 - KNTT
Giải Bài 6.6 trang 9 SGK Toán 11 Kết nối tri thức tập 2 - KNTT
Giải Bài 6.7 trang 9 SGK Toán 11 Kết nối tri thức tập 2 - KNTT
Giải Bài 6.8 trang 9 SGK Toán 11 Kết nối tri thức tập 2 - KNTT
Bài tập 6.1 trang 6 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.2 trang 6 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.3 trang 6 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.4 trang 6 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.5 trang 6 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.6 trang 7 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.7 trang 7 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.8 trang 7 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.9 trang 7 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.10 trang 7 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.