OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 41 trang 113 SBT Toán 11 Tập 1 Cánh diều - CD

Bài tập 41 trang 113 SBT Toán 11 Tập 1 Cánh diều

Cho hình lăng trụ tam giác \(ABC.A'B'C'\). Gọi \(M\) là trung điểm của \(A'C'\).

a) Chứng minh rằng \(A'B\parallel \left( {B'CM} \right)\).

b) Xác định giao tuyến \(d\) của hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {A'BC'} \right)\).

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài tập 41

a) Gọi \(N\) là trung điểm cạnh \(BC'\). Do \(M\) là trung điểm cạnh \(A'C'\) nên \(MN\) là đường trung bình của tam giác \(A'BC'\).

Suy ra \(A'B\parallel MN\).

Do \(MN \subset \left( {B'MC} \right)\), nên \(A'B\parallel \left( {B'MC} \right)\).

Bài toán được chứng minh.

b) Ta có: \(AC\parallel A'C'\), \(A'C' \subset \left( {A'BC'} \right)\), \(AC \subset \left( {ABC} \right)\).

Nên giao tuyến của hai mặt phẳng này (nếu có) là một đường thẳng song song hoặc trùng với \(AC\).

Mặt khác, do \(B \in \left( {ABC} \right) \cap \left( {A'BC'} \right)\).

Nên ta kết luận rằng \(\left( {ABC} \right)\) và \(\left( {A'BC'} \right)\) có giao tuyến là đường thẳng \(d\) đi qua \(B\) và song song với \(AC\) (trên hình vẽ).

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 41 trang 113 SBT Toán 11 Tập 1 Cánh diều - CD HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF